# ISI2014-DCG-12

182 views

The integral $$\int _0^{\frac{\pi}{2}} \frac{\sin^{50} x}{\sin^{50}x +\cos^{50}x} dx$$ equals

1. $\frac{3 \pi}{4}$
2. $\frac{\pi}{3}$
3. $\frac{\pi}{4}$
4. none of these
in Calculus
edited

Let $\displaystyle I=\int_{0}^{\frac{\pi}{2}} \frac{\sin^{50}x}{\sin^{50}x+\cos^{50}x}dx\qquad \to (1)$

By using property of definite integration

$\displaystyle \int_{0}^{a}f(x)dx=\int_{0}^{a}f(a-x)dx$

$\displaystyle I=\int_{0}^{\frac{\pi}{2}} \frac{\cos^{50}x}{\cos^{50}x+\sin^{50}x}dx\qquad \to (2)$

Adding $(1)$ and $(2),$

$\displaystyle 2I=\int_{0}^{\frac{\pi}{2}} \frac{\sin^{50}x+\cos^{50}x}{\sin^{50}x+\cos^{50}x}dx$

$\displaystyle \implies 2I=\int_{0}^{\frac{\pi}{2}}1\;dx$

$\displaystyle \implies 2I=\left[x\right]_{0}^{\frac{\pi}{2}}$

$\implies 2I=\left[ \frac{\pi}{2}\right]$

$\implies I=\frac{\pi}{4}$

selected by

## Related questions

1
111 views
For real $\alpha$, the value of $\int_{\alpha}^{\alpha+1} [x]dx$, where $[x]$ denotes the largest integer less than or equal to $x$, is $\alpha$ $[\alpha]$ $1$ $\dfrac{[\alpha] + [\alpha +1]}{2}$
The value of the definite integral $\int_0^{\pi} \mid \frac{1}{2} + \cos x \mid dx$ is $\frac{\pi}{6} + \sqrt{3}$ $\frac{\pi}{6} - \sqrt{3}$ $0$ $\frac{1}{2}$
The value of the integral $\displaystyle{}\int_{-1}^1 \dfrac{x^2}{1+x^2} \sin x \sin 3x \sin 5x dx$ is $0$ $\frac{1}{2}$ $– \frac{1}{2}$ $1$
If $A(t)$ is the area of the region bounded by the curve $y=e^{-\mid x \mid}$ and the portion of the $x$-axis between $-t$ and $t$, then $\underset{t \to \infty}{\lim} A(t)$ equals $0$ $1$ $2$ $4$