The Gateway to Computer Science Excellence
0 votes
Let $A$ be a Turing-recognizable language consisting of descriptions of Turing machines, $\{ \langle M_{1}\rangle,\langle M_{2}\rangle,\dots\}$, where every $M_{i}$ is a decider. Prove that some decidable language $D$ is not decided by any decider $M_{i}$ whose description appears in $A$. (Hint: You may find it helpful to consider an enumerator for $A$.)
in Theory of Computation by | 22 views

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
52,345 questions
60,471 answers
95,274 users