Redirected
edited by
1,325 views
0 votes
0 votes

Let $a^{2c} \text{ mod } n = (a^c)^2 \text{ mod } n$ and $a^{2c+1}\text{ mod }  n= a \cdot (a^c)^2\text{ mod }n$. For $a=7$, $b=17$ and $n=561$, What is the value of $a^b( \text{mod } n)$?

  1. $160$
  2. $166$
  3. $157$
  4. $67$
edited by

2 Answers

2 votes
2 votes

$\underline{\textbf{Answer:}\Rightarrow}\;1)\;160$

$\underline{\textbf{Explanation:}\Rightarrow}$

$\textbf{Given:}\;7^{17}\;\text{mod}\;561$ 

$\mathbf{561}$ can be factorised into $3\times 17\times 11$.

Now,

$7^{17} = 3\times \mathbf{q_1}+1\\7^{17} = 17\times \mathbf{q_2}+7\\7^{17}= 11\times \mathbf{q_3} - 5\;\;\;\text{[$\therefore\;$Positive remainder = 6]}$

Now choose among the all options which when divided by $\mathbf{3,17,11}$ gives the remainder $\mathbf{1,7,6}$.

$\therefore$ Only option $(1)$ satisfies.


$\textbf{Calculating remainders using Euler's Theorem:}$

$\mathrm{\begin{align} 7^{17} \;\text{mod}\;11 &= 7^{10}\times 7^7 \;\text{mod} \;11 \\&= 1 \times 7^7 \;\;\text{mod} \;\;11 \\&= 7^3 \times 7^3 \times 7\;\;\text{mod} \;\;11\\&= 343\;\;\text{mod}\;\;11\times 343\;\;\text{mod}\;\;11\times 7\;\;\text{mod}\;\;11 \\&= 2\times 2\times7\;\;\text{mod} \;\;11 \\&= 28\;\;\text{mod}\;\;11 \\&= 6\;\;\text{mod} \;\;11 \\&= \color{magenta}{\enclose{circle}{-5}} \; \;\text{mod} \;\;11 \end{align}}$

Or, remainder $=\color{magenta}{\enclose{circle}{6}}\;\;\;\mathrm{[\because 6+5=11]}$

Similarly, the other two remainders can be calculated.

$\therefore\;\textbf{1)}$ is the right option.

$\textbf{For extended Reading, Refer:}$

http://mathonline.wikidot.com/examples-of-finding-remainders-of-large-numbers

edited by
0 votes
0 votes
  • 7¹⁷mod561

  • ≡7((7⁴)²)²)mod561

  • ≡7((2401)²)²)mod561

  • ≡7((157)²)²)mod561 [2401 mod 561 ≡ 157]

  • ≡7(24649)²mod561

  • ≡7(−35)² [∵24649mod561 ≡ 526 ≡ −35]

  • ≡7(1225)mod561

  • ≡7(103)mod561

  • ≡721mod561

  • ≡160

Related questions

1 votes
1 votes
2 answers
1
4 votes
4 votes
6 answers
3
soujanyareddy13 asked May 12, 2021
1,933 views
The Boolean expression $AB+A \overline{B}+\overline{A}C+AC$ is unaffected by the value of the Boolean variable _________.$A$$B$$C$$A, B$ and $C$