is it option D?

Dark Mode

615 views

0 votes

Let $G= (V,T,S,P)$ be a context-free grammer such that every one of its productions is of the form $A\rightarrow v$, with $\mid v \mid=K> 1$. The derivation tree for any $W \in L(G)$ has a height $h$ such that

- $\log_{K} \mid W \mid \leq h\leq \log_{K} \left (\frac{ \mid W \mid-1}{K-1} \right ) \\$
- $\log_{K} \mid W \mid \leq h \leq \log_{K} \left ( K \mid W \mid \right) \\$
- $\log_{K} \mid W \mid \leq h \leq K \log_{K} \mid W \mid \\$
- $\log_{K}|W \mid \leq h \leq \left (\frac{ \mid W \mid – 1}{K-1} \right)$