retagged by
877 views
2 votes
2 votes

Which of the following statements is false?

  1. $(P\land Q)\lor(\sim P\land Q)\lor(P \land \sim Q)$ is equal to $\sim Q\land \sim P$
  2. $(P\land Q)\lor(\sim P\land Q)\lor(P \wedge \sim Q)$ is equal to $Q\lor P$
  3. $(P\wedge Q)\lor (\sim P\land Q)\lor(P \wedge \sim Q)$ is equal to $Q\lor (P\wedge \sim Q)$
  4. $(P\land Q)\lor(\sim P\land Q)\lor (P \land \sim Q)$ is equal to $P\lor (Q\land \sim P)$
retagged by

3 Answers

Best answer
1 votes
1 votes
  1. $(P\land Q)\lor(\sim P\land Q)\lor(P \land \sim Q)$ is equal to $\sim Q\land \sim P$

    We can write above left hand expression , in the digital logic form$:PQ + \overline{P}\;Q + P\;\overline{Q} = Q(P + \overline{P}) +P\; \overline{Q}  = Q +P \;\overline{Q} = (Q+\overline{Q})\cdot (Q + P) = P + Q \equiv P \vee Q \not\equiv  \sim Q\land \sim P\;\text{(False)}$
     
  2. $(P\land Q)\lor(\sim P\land Q)\lor(P \wedge \sim Q)$ is equal to $Q\lor P\;\text{(True as shown in option A)}$
     
  3. $(P\wedge Q)\lor (\sim P\land Q)\lor(P \wedge \sim Q)$ is equal to $Q\lor (P\wedge \sim Q)$

    We can write the right hand expression, in terms of digital logic, $Q\lor (P\wedge \sim Q) \equiv Q + P\;\overline{Q}  = (Q+\overline{Q})\cdot (Q + P) = P + Q \equiv P \vee Q$

    LHS and RHS are equal. (True)
     
  4. $(P\land Q)\lor(\sim P\land Q)\lor (P \land \sim Q)$ is equal to $P\lor (Q\land \sim P)$

    We can write the right hand expression, in terms of digital logic, $P\lor (Q\wedge \sim P) \equiv P + Q\;\overline{P}  = (P+\overline{P})\cdot (P + Q) = P + Q \equiv P \vee Q$

    LHD and RHS are equal. (True)

So, the correct answer is $(A).$

selected by
0 votes
0 votes
Ans :A

After  solving with truth table

(P∧Q)∨(∼P∧Q)∨(P∧∼Q)(P∧Q)∨(∼P∧Q)∨(P∧∼Q) is  not equal to  ∼Q∧∼P
0 votes
0 votes

Only if we are provided AND or OR operation will apply this technique.

edited by
Answer:

Related questions

0 votes
0 votes
1 answer
1
admin asked Mar 30, 2020
9,936 views
Given an undirected graph $G$ with $V$ vertices and $E$ edges, the sum of the degrees of all vertices is$E$$2E$$V$$2V$
0 votes
0 votes
1 answer
3
admin asked Mar 30, 2020
2,071 views
A path in graph $G$, which contains every vertex of $G$ and only once?Euler circuitHamiltonian pathEuler PathHamiltonian Circuit