(B)

Dark Mode

512 views

3 votes

Given, $ABCD=I$ and all the matrices are invertible (as their determinant is non-zero given)

Pre-multiplying on both sides of the equation with $A^{-1}$, $A^{-1}ABCD=A^{-1}I$ $\Rightarrow$ $BCD=A^{-1}$

Pre-multiplying on both sides of the equation with $B^{-1}$, $B^{-1}BCD=B^{-1}A^{-1}$ $\Rightarrow$ $CD=B^{-1}A^{-1}$

Post-multiplying on both sides of the equation with $A$, $CDA=B^{-1}A^{-1}A$ $\Rightarrow$ $CDA=B^{-1}$

Option B is correct.

Pre-multiplying on both sides of the equation with $A^{-1}$, $A^{-1}ABCD=A^{-1}I$ $\Rightarrow$ $BCD=A^{-1}$

Pre-multiplying on both sides of the equation with $B^{-1}$, $B^{-1}BCD=B^{-1}A^{-1}$ $\Rightarrow$ $CD=B^{-1}A^{-1}$

Post-multiplying on both sides of the equation with $A$, $CDA=B^{-1}A^{-1}A$ $\Rightarrow$ $CDA=B^{-1}$

Option B is correct.