Dark Mode

Lakshman Patel RJIT
asked
in Computer Networks
Mar 31, 2020
recategorized
Aug 23, 2020
by Lakshman Patel RJIT

468 views
1 vote

Two alternative packages $A$ and $B$ are available for processing a database having $10k$ records. Package $A$ requires $0.0001n2$ time units and package $B$ requires $10 n \log 10n$ time units to process $n$ records. What is the smallest value of $k$ for which package $B$ will be preferred over $A$?

- $12$
- $10$
- $6$
- $5$

1 vote

the smallest value of kk for which package BB will be preferred over A

B\leqslantA

$10nlog_{10}(n) ≤ 0.0001n^{2}$

Given$ n = 10^{k }$records. Therefore,

$10*10^{k}log_{10}(10^{k}) ≤ 0.0001(10^{k})^{2}$

$10^{k+1}*k ≤ 0.0001 × 10^{2k}$

$k ≤ 10^{2k−k−1−4}$

$k ≤ 10^{k−5}->(1)$

if $k=12$ put in equation 1

$12\leqslant10^{12-5}$

$12\leqslant10^{7}$ IT IS true

if $k=10$ put in equation 1

$10\leqslant10^{10-5}$

$10\leqslant10^{5}$ IT IS true

if $k=6$ put in equation 1

$6\leqslant10^{6-5}$

$6\leqslant10$ it is true

if $k=5$ put in equation 1

$5\leqslant10^{5-5}$

$5\leqslant1$ it is not true

here K=12,10,6 satisfied but in question asking minimum value which satisfied equation 1

MINIMUM VALUE IS 6

Option C

B\leqslantA

$10nlog_{10}(n) ≤ 0.0001n^{2}$

Given$ n = 10^{k }$records. Therefore,

$10*10^{k}log_{10}(10^{k}) ≤ 0.0001(10^{k})^{2}$

$10^{k+1}*k ≤ 0.0001 × 10^{2k}$

$k ≤ 10^{2k−k−1−4}$

$k ≤ 10^{k−5}->(1)$

if $k=12$ put in equation 1

$12\leqslant10^{12-5}$

$12\leqslant10^{7}$ IT IS true

if $k=10$ put in equation 1

$10\leqslant10^{10-5}$

$10\leqslant10^{5}$ IT IS true

if $k=6$ put in equation 1

$6\leqslant10^{6-5}$

$6\leqslant10$ it is true

if $k=5$ put in equation 1

$5\leqslant10^{5-5}$

$5\leqslant1$ it is not true

here K=12,10,6 satisfied but in question asking minimum value which satisfied equation 1

MINIMUM VALUE IS 6

Option C