retagged by
6,463 views
3 votes
3 votes

If $A$ and $B$ are square matrices of size $n\times n$, then which of the following statements is not true?

  1. $\det(AB)=\det(A) \det(B)$
  2. $\det(kA)=k^n \det(A)$
  3. $\det(A+B)=\det(A)+\det(B)$
  4. $\det(A^T)=1/\det(A^{-1})$
retagged by

2 Answers

1 votes
1 votes

statement " det(A+B)=det(A)+det(B) " is not correct,

consider A = I; det(A) = 1; //I is Identity matrix of order 2X2

B = -A = -I; det(B) = 1; //det(X) returns determinant of X

det(A+B) = 0;

while, det(A) + det(B) = 2;

1 votes
1 votes
A counter example.

Let $A = \begin{bmatrix} 1 &0 \\ 0 &0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 &0 \\ 0 & 1 \end{bmatrix}$

Then, $det\bigl(\begin{smallmatrix} \begin{bmatrix} 1 &0 \\ 0 &0 \end{bmatrix} + &\begin{bmatrix} 0 &0 \\ 0 & 1 \end{bmatrix} \end{smallmatrix}\bigr)= det\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = 1$

But, $det\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} + det\begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = 0+0 = 0$

Therefore, $det\begin{pmatrix} A +B \end{pmatrix} \neq det\begin{pmatrix} A \end{pmatrix} + det\begin{pmatrix} B \end{pmatrix}$
Answer:

Related questions

2 votes
2 votes
1 answer
1
admin asked Mar 31, 2020
688 views
What is the determinant of the matrix $\begin{bmatrix}5&3&2\\1&2&6\\3&5&10\end{bmatrix}$$-76$$-28$$+28$$+72$
4 votes
4 votes
1 answer
2
admin asked Mar 31, 2020
706 views
The system of simultaneous equations$x+2y+z=6\\2x+y+2z=6\\x+y+z=5$hasunique solution.infinite number of solutions.no solution.exactly two solutions.
3 votes
3 votes
3 answers
3
admin asked Mar 31, 2020
929 views
Two eigenvalues of a $3\times3$ real matrix $P$ are $(2+​ \sqrt-1)$ and $3$. The determinant of $P$ is ________.$0$$1$$15$$-1$
2 votes
2 votes
2 answers
4
admin asked Mar 31, 2020
762 views
Let $A,B,C,D$ be $n\times n$ matrices, each with non-zero determinant. If $ABCD=1$, then $B^{-1}$ is:$D^{-1}C^{-1}A^{-1}$$CDA$$ADC$Does not necessarily exist.