recategorized by
406 views

2 Answers

0 votes
0 votes
Option B is correct

Substitute  $t=\left ( tan\theta \right )^{\frac{1}{3}}$  ------(1)

$\Rightarrow$  $dt=\frac{1}{3}\times(tan \theta)^{\frac{-2}{3}}\times sec^2\theta$  $d\theta$

$\therefore$ The integral would now become   $\frac{(tan \theta)^{\frac {2}{3}}\times \frac{1}{3}\times (tan \theta)^{\frac{-2}{3}}\times sec^2\theta}{ 1+tan^2\theta }$   $d\theta$

$\Rightarrow$   $\frac{1}{3}\times$$\int_{0}^{x^2} \theta$  $d\theta= \frac{1}{3}\times$  $\frac{tan^{-1}(x^{6})}{x^{6}}$     (using identity $1+tan^{2}\theta=sec^{2}\theta$ and resubstituting value of $t$ from equation 1)

$\therefore$ limit now becomes  $\lim_{x \to0}$   $\frac{1}{3}\times \frac{tan^{-1}(x^{6})}{x^{6}}$

 if  $x\rightarrow0$  then  $x^{6}\rightarrow 0$ .  So, using the formula  $\lim_{x \to0}$  $\frac{tan^{-1}(x)}{x}=1$, we get the answer as  $\frac{1}{3}\times 1=\frac{1}{3}$
Answer:

Related questions

3 votes
3 votes
2 answers
1
admin asked Apr 2, 2020
719 views
The function $f(x)=x^{5}-5x^{4}+5x^{3}-1$ hasone minima and two maximatwo minima and one maximatwo minima and two maximaone minima and one maxima
2 votes
2 votes
1 answer
2
admin asked Apr 2, 2020
432 views
$\underset{x \rightarrow 0}{\lim} \dfrac{x^{3}+x^{2}-5x-2}{2x^{3}-7x^{2}+4x+4}=?$ $-0.5$$(0.5)$$\infty$None of the above
1 votes
1 votes
1 answer
3
admin asked Apr 2, 2020
342 views
$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \sin^{7}\theta \cos ^{4} \theta d\theta=?$$16/1155$$16/385$$16\pi/385$$8\pi/385$
1 votes
1 votes
0 answers
4
admin asked Apr 2, 2020
314 views
$\displaystyle \lim_{x \rightarrow a}\frac{1}{x^{2}-a^{2}} \displaystyle \int_{a}^{x}\sin (t^{2})dt=$?$2a \sin (a^{2})$$2a$$\sin (a^{2})$None of the above