133 views
3 votes
3 votes

How many ways can we fill the following table so that the binary operation $\ast$ is commutative?
$$\begin{array}{| c | c| c | c | c |}
\hline
\textbf{$\ast$} & \textbf{a} &\textbf{b} &\textbf{c} & \textbf{d}\\
\hline
\textbf{a}& d & c & & a\\
\hline
\textbf{b}& & d & a &\\
\hline
\textbf{c}& b & & d & c\\
\hline
\textbf{d} & & b & & d\\
\hline
\end{array}$$

  1. $2$
  2. $3$
  3. $1$
  4. $4$

1 Answer

Best answer
1 votes
1 votes
If the Cayley table is symmetric along the diagonal axis, then the $(ij)^{th}$ entry is equal to the  $(ji)^{th}$ entry, so $a_i\ast a_j=a_j\ast a_i$, and so the group is abelian.

Conversely, if the group is abelian, then $a_i\ast a_j=a_j\ast a_i$, for every $a_ia_j$ in our group. Therefore, the $(ij)^{th}$ entry is equal to the $(ji)^{th}$ entry in the Cayley table, so the table is symmetric.
$$\require{color}
\begin{array}{| c | c| c | c | c |}
\hline
 \textbf{$\ast$} & \textbf{a} &\textbf{b} &\textbf{c} & \textbf{d} \\ \hline
  \textbf{a}& d & c & \textcolor{red}{b} & a \\ \hline
  \textbf{b}& \textcolor{blue!90!black}{c}  & d  & a  & \textcolor{red}{b} \\  \hline
  \textbf{c}& b  & \textcolor{magenta!70!black}{a}  & d  & c \\ \hline
 \textbf{d} & \textcolor{magenta!70!black}{a}  & b  & \textcolor{blue!90!black}{c}   & d \\
 \hline
\end{array}$$There is only one way to fill the Cayley table as one of the symmetric entries are already filled.

So, the correct answer is $(C)$.
selected by
Answer:

Related questions

4 votes
4 votes
1 answer
1
gatecse asked Jul 5, 2020
416 views
Let $'a'$ be an element in a group such that $ord(a) = 2020.$ The order of $a^{43}$ is _________
6 votes
6 votes
1 answer
2
gatecse asked Jul 5, 2020
414 views
Let $G$ be a group with order $45$, and $H$ a non-abelian subgroup of $G$. Assuming $H \neq G$, what is the smallest possible order of $H$?
3 votes
3 votes
2 answers
3
gatecse asked Jul 5, 2020
372 views
Let $G=\langle{a\rangle}$. The smallest subgroup of $G$ containing $a^{2020}$ and $a^{1719}$ is _________$a^{4}$$a^{1719}$$a^{2020}$$a^{1}$