edited by
266 views
0 votes
0 votes

Let $f\left ( x \right )=\frac{log\left ( 2+x \right )}{\sqrt{1+x}}$ for $x\geq 0$, and $a_{m}=\frac{1}{m}\int_{0}^{m}f\left ( t \right )dt$ for every positive integer $m$.

Then the sequence $\{a_{m}\} \infty_{m=1}$

  1. diverges to $+\infty$
  2. has more than one limit point
  3. converges and satisfies $\lim_{m\rightarrow \infty }a_{m}=\frac{1}{2}$log $2$
  4. converges and satisfies $\lim_{m\rightarrow \infty }a_{m}=0$
edited by

1 Answer

1 votes
1 votes
$f(t)= \frac{\ln (2+t)}{\sqrt{1+t}}$

$\int \frac{\ln (2+t)}{\sqrt{1+t}}\; dt$

$\int \frac{\ln (1+(\sqrt{1+t})^2)}{\sqrt{1+t}}\; dt$

$\text {Let, $\sqrt{1+t}=z$} \Rightarrow \frac{1}{\sqrt{1+t}}\;dt = 2dz$

$\text{so,}$ $\int \frac{\ln (1+(\sqrt{1+t})^2)}{\sqrt{1+t}}\; dt = 2\int \ln (1+z^2)*1\; dz$

$\text{Consider}$ $\ln (1+z^2)$ as first function $“1”$ as second function.

$\text{On applying integration by parts and substituting $z=\sqrt{1+t}$, we get}$

$\int \frac{\ln (2+t)}{\sqrt{1+t}}\; dt = 2\left [ \sqrt{1+t} \ln (2+t) - 2 (\sqrt{1+t} - \tan^{-1}(\sqrt{1+t}))\right ]$

$\text{Now, $a_m=\frac{1}{m}\int_{0}^{m} f(t)\;dt=\frac{2}{m}\left [ \sqrt{1+m} \ln (2+m) - 2 (\sqrt{1+m} - \tan^{-1}(\sqrt{1+m}))\right ]$}$

$\text{By using L’H$\hat{o}$pital’s rule,}$

$\lim_{m\rightarrow \infty} \frac{\sqrt{1+m} \ln (2+m)}{m} = 0$

$\lim_{m\rightarrow \infty} \frac{\sqrt{1+m}}{m} = 0$

$\lim_{m\rightarrow \infty} \frac{\tan^{-1}\sqrt{1+m}}{m} = 0$

$\text{Hence,$\lim_{m\rightarrow \infty}a_m = 0$} $
Answer:

Related questions

0 votes
0 votes
0 answers
1
soujanyareddy13 asked Aug 28, 2020
149 views
True/False Question :Let $A$ be a countable union of lines in $\mathbb{R}^{3}$. Then $\mathbb{R}^{3} \setminus A$ is connected.
0 votes
0 votes
1 answer
3
soujanyareddy13 asked Aug 28, 2020
491 views
Consider the set of continuous functions $f:\left [ 0,1 \right ]\rightarrow \mathbb{R}$ that satisfy:$$\int_{0}^{1}f\left ( x \right )\left ( 1-f\left ( x \right ) \right...