edited by
303 views
0 votes
0 votes

True/False Question :

The matrices 

$$\begin{pmatrix} x &0 \\ 0 & y \end{pmatrix} and \begin{pmatrix} x &1 \\ 0 & y \end{pmatrix}, x\neq y,$$

for any $x,y \in \mathbb{R}$ are conjugate in $M_{2}\left ( \mathbb{R} \right )$ .

edited by

1 Answer

Best answer
1 votes
1 votes
$\text{ if we can write 2 matrices A and B as $A=M^{-1}BM$ for some invertible matrix M}$

$\text{then they are called conjugate.}$

$\text{Consider, 2 matrices A and B as :}$

$\text{$A= \begin{pmatrix} x &0 \\ 0&y \end{pmatrix}$ and $B= \begin{pmatrix} x &1 \\ 0&y \end{pmatrix}$}$

$\text{Since, for matrix B, eigenvalues are x and y where $x \neq y $ (distinct eigen values)}$

$\text{So, matrix B is diagonalizable.}$

$\text{It means I can write B as $B=PDP^{-1}$, where matrix P is made of eigen vectors and}$

$\text{matrix D is made of eigen values which are in the diagonal }$

$\text{Eigen vectors of B are $\begin{pmatrix} 1\\0 \end{pmatrix}$ for eigen value x}$

$\text{and $\begin{pmatrix} \frac{-1}{x-y}\\1 \end{pmatrix}$ for eigen value y}$

$\text{So, matrix $P=\begin{pmatrix} 1 &\frac{-1}{x-y} \\ 0&1 \end{pmatrix}$ and $D=\begin{pmatrix} x &0 \\ 0&y \end{pmatrix}$}$

$\text{So, I can write $B=PDP^{-1}$}$

$\text{Here, matrix D is same as matrix A}$

$\text{So, $B=PAP^{-1}$}$

$\text{So, $BP=PA$}$

$\text{So, $P^{-1}BP=A$}$

$\text{Hence, matrices A and B are conjugate.}$
selected by
Answer:

Related questions

0 votes
0 votes
0 answers
1
0 votes
0 votes
0 answers
2
soujanyareddy13 asked Aug 30, 2020
176 views
True/False Question :Suppose $a, b, c$ are positive real numbers such that$$\left ( 1+a+b+c \right )\left ( 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )=16.$$Then $a+b+...
0 votes
0 votes
0 answers
3
soujanyareddy13 asked Aug 30, 2020
113 views
True/False Question :There exists a function $f:\mathbb{R} \rightarrow \mathbb{R}$ satisfying,$f\left ( -1 \right )=-1, f(1)=1$ and $\left | f\left ( x \right )-f\left ( ...
0 votes
0 votes
0 answers
4
soujanyareddy13 asked Aug 30, 2020
133 views
True/Flase Question :Over the real line,$$\underset{x\rightarrow \infty }{lim}\: log\left ( 1+\sqrt{4+x} -\sqrt{1+x}\right )=log\left ( 2 \right ).$$