edited by
196 views
0 votes
0 votes

Let $S$ be the set of all $3 \times3$ matrices $A$ with integer entries such that the product $AA^{t}$ is the identity matrix. Here $A^{t}$ denotes the transpose of $A$. Then $\left | S \right |$ =

  1. $12$
  2. $24$
  3. $48$
  4. $60$
edited by

Please log in or register to answer this question.

Answer:

Related questions

0 votes
0 votes
0 answers
1
soujanyareddy13 asked Aug 30, 2020
259 views
The value of the product $\left ( 1+\frac{1}{1!} +\frac{1}{2!}+\cdots \right )\left ( 1-\frac{1}{1!} +\frac{1}{2!}-\frac{1}{3!}+\cdots \right )$ is $1$$e^{2}$$0$$log_{e} ...
0 votes
0 votes
0 answers
2
soujanyareddy13 asked Aug 30, 2020
176 views
The value of the series $\sum _{n=1}^{\infty }\frac{n}{2^{n}}$ is$1$$2$$3$$4$.
0 votes
0 votes
0 answers
3