Dark Mode

283 views

2 votes

$\text{Area of 25 circles of radius 1} \geq \text{Area of rectangle}$

$25 * \pi * (1)^2 \geq (B – A) * (C – D)$

$25 * \pi \geq (B – A) * (C – D)$

Now $\text{Area of 101 circles of radius } \frac{1}{2} = 25 * \pi * (\frac{1}{2})^2 = 25.25\pi$

$\therefore \text{Area of 101 circles of radius } \frac{1}{2} \geq \text{Area of rectangle}$

So True.

$25 * \pi * (1)^2 \geq (B – A) * (C – D)$

$25 * \pi \geq (B – A) * (C – D)$

Now $\text{Area of 101 circles of radius } \frac{1}{2} = 25 * \pi * (\frac{1}{2})^2 = 25.25\pi$

$\therefore \text{Area of 101 circles of radius } \frac{1}{2} \geq \text{Area of rectangle}$

So True.