edited by
95 views
1 votes
1 votes

If there are $n$ transactions each having $m_{1},m_{2},\dots,m_{n}$ operations respectively, the number of concurrent schedules possible is ______ (Mark all the appropriate options)

  1. $\dfrac{(m_{1} + m_{2} + m_{3} + \dots + m_{n})!}{m_{1}!m_{2}!m_{3}!\dots m_{n}!}$
  2. $n! - \dfrac{(m_{1} + m_{2} + m_{3} + \dots + m_{n})!}{m_{1}!m_{2}!m_{3}!\dots m_{n}!} $
  3. $^{m_1+m_2+m_3+...+m_n}C_{m_1}\times^{m_2+m_3+\ldots+m_n}C_{m_2}\times^{m_3+\ldots+m_n}C_{m_3}\times \ldots \times^{m_n}C_{m_n}$
  4. $\dfrac{(m_{1} \times m_{2} \times m_{3} \times \dots \times m_{n})!}{m_{1}!m_{2}!m_{3}!\dots m_{n}!} $
edited by

1 Answer

1 votes
1 votes
The correct answer is $A;C.$
Answer:

Related questions