edited by
416 views
7 votes
7 votes

Which of the following matrices do not have a LU decomposition? (Mark all the appropriate choices)

  1. $\begin{bmatrix} 1 & 2 & 4\\
    3 & 8 & 14\\
    2 & 6 & 13 \end{bmatrix}$
     
  2. $\begin{bmatrix} 1 & 2 & 4\\
    4 & 8 & 14\\
    2 & 6 & 13 \end{bmatrix}$
     
  3. $\begin{bmatrix} 1 & 2 & 3\\
    3 & 8 & 14\\
    2 & 6 & 13 \end{bmatrix}$
     
  4. $\begin{bmatrix} 1 & 2 & 3\\
    4 & 5 & 6\\
    7 & 8 & 9 \end{bmatrix}$
edited by

1 Answer

3 votes
3 votes
Any square matrix $A$ admits $LUP$ and $PLU$ factorizations. If $A$ is invertible, then it admits an $LU \;\text{(or)}\; LDU$ factorization if and only if all its leading principal minors are nonzero.

$\textbf{(or)}$

An invertible matrix $A$ has an $LU$ decomposition provided that all its leading submatrices have non-zero determinants. The $k^{\text{th}}$ leading submatrix of $A$ is denoted $A_{k}$ and is the $k \times k$ matrix found by looking only at the top $k$ rows and leftmost $k$ columns.

If a square, invertible matrix has an $LDU$ (factorization with all diagonal entries of $L$ and $U$ equal to $1$), then the factorization is unique. In that case, the $LU$ factorization is also unique if we require that the diagonal of $L\; \text{(or)}\;U $ consists of ones.

If $A$ is a singular matrix of rank $k$, then it admits an $LU$ factorization if the first $k$ leading principal minors are nonzero, although the converse is not true.

 Matrix $A_{k \times k}$ has $LU$ factorization if: $$\mathsf Rank(A_{11})+k\geq   Rank\left(\begin{bmatrix}
    A_{11}       & A_{12}
\end{bmatrix}\right) +Rank\left(\begin{bmatrix}
    A_{11}   \\ A_{21}
\end{bmatrix}\right)$$
this must hold for each $k = 1,\dots, n − 1.$

We can also write these conditions as $\text{rank}\left(A[{1 \dots k}]\right) + k \geq  \text{rank}\left(A[{1 \dots k}, {1 \dots n}] \right)+ \text{rank}\left(A[{1\dots n}, {1 \dots k}]\right)$ for all $k = 1, \dots , n.$

For option $A:A_{1} = \begin{bmatrix} 1 \end{bmatrix},\;A_{2} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix},\;\text{and}\;  A_{3} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 8 & 14 \\ 2 & 6 & 13 \end{bmatrix}$

Now, $\mid A_{1} \mid = 1,\;\mid A_{2} \mid = 2,\;\text{and}\; \mid A_{3} \mid = 6$

$\therefore LU$ – decomposition is possible.

For option $B:A_{1} = \begin{bmatrix} 1 \end{bmatrix},\;A_{2} = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix},\;\text{and}\;  A_{3} = \begin{bmatrix} 1 & 2 & 4 \\ 4 & 8 & 14 \\ 2 & 6 & 13  \end{bmatrix}$

Now, $\mid A_{1} \mid = 1,\;\mid A_{2} \mid = 0,\;\text{and}\; \mid A_{3} \mid = 4$

$\therefore LU$ – decomposition is not possible.

For option $C:A_{1} = \begin{bmatrix} 1 \end{bmatrix},\;A_{2} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix},\;\text{and}\;  A_{3} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 8 & 14 \\ 2 & 6 & 13 \end{bmatrix}$

Now, $\mid A_{1} \mid = 1,\;\mid A_{2} \mid = 2,\;\text{and}\; \mid A_{3} \mid = 4$

$\therefore LU$ – decomposition is possible.

For option $D:$  $A  = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \implies \det(A) = 0\quad \text{(Singular matrix)}$

Here, $\text{rank(A)} = 2,$ and $A_{1} = [1] \implies \mid A_{1} \mid \neq 0,A_{2} = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} \implies \mid A_{2} \mid  = 5 – 8 = -3 \neq 0$

$\therefore LU$ – decomposition is possible.

So, the correct answer is $(B).$
edited by
Answer:

Related questions

1 votes
1 votes
1 answer
2
gatecse asked Oct 30, 2020
206 views
In the LU decomposition of the matrix $\begin{bmatrix}3 & 5\\ 6 & 8\end{bmatrix}$, if the diagonal elements of $U$ are both $1$, then the lower diagonal entry $l_{22}$ of...
2 votes
2 votes
1 answer
3
gatecse asked Oct 30, 2020
257 views
If $A =\begin{bmatrix}1 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{bmatrix},$ the value of $(A^{-1})^{T}$ is _____(Mark all the appropriate choices)$A$$Adj\;A$$\left(\left(A^{T}\r...