retagged by
369 views
2 votes
2 votes

The value of $'x'$ for which all the eigen values of the matrix given below $\begin{bmatrix}
2 & 3+i & 6\\
x & 3 & 2\\
1 & 4 & 3\\
\end{bmatrix}$ are real is ________ $(i = \sqrt{-1})$

  1. $3 + i$
  2. $1 - 3i$
  3. $3 - i$
  4. $1 + 3i$
retagged by

1 Answer

3 votes
3 votes
Eigen values of real Hermition (a complex square matrix that is equal to its own conjugate transpose) matrix are real.   
    
$\text{For Real Symmetric matrix}: A = A^{T}$    
    
$\text{For Hermition matrix}: A = A^{\theta} = (\;\overline{A}\;)^{T}$

Let $A = \begin{bmatrix}
2 & 3+i & 6 \\
x & 3 & 2 \\
1 & 4 & 3
\end{bmatrix}$
    
$\implies \overline{A} = \begin{bmatrix}
2 & 3-i & 6 \\
\overline{x} & 3 & 2 \\
1 & 4 & 3
\end{bmatrix}$    
    
$\implies A^{\theta} = (\;\overline{A} \;)^{T} = \begin{bmatrix}
2 & \overline{x} & 1 \\
3-i & 3 & 4 \\
6 & 2 & 3
\end{bmatrix}$        
    
 $\text{For Hermition matrix}: A^{\theta} = (\;\overline{A}\;)^{T} = A$
 
$\implies \begin{bmatrix}
2 & \overline{x} & 1 \\
3-i & 3 & 4 \\
6 & 2 & 3
\end{bmatrix} =  \begin{bmatrix}
2 & 3+i & 6 \\
x & 3 & 2 \\
1 & 4 & 3
\end{bmatrix}$    
    
Here, $x = 3 - i.$
    
So, the correct answer is $(C).$
edited by
Answer:

Related questions

2 votes
2 votes
1 answer
1
gatecse asked Oct 30, 2020
269 views
The eigen values of $A = \begin{bmatrix}3 & 3 & 3 & 3 & 3\\3 & 3 & 3 & 3 & 3\\3 & 3 & 3 & 3 & 3\\3 & 3 & 3 & 3 & 3\\3 & 3 & 3 & 3 & 3\end{bmatrix}$ are _______$0,0,0,15,0...
2 votes
2 votes
1 answer
2
gatecse asked Oct 30, 2020
247 views
If the eigen value of a $2 \times 2$ matrix $A$ are $-3$ and $-4,$ the sum of the eigen value of the matrices $(A + 2I)^{-1}$ and $(A + 8I)^{2}=$ ______
1 votes
1 votes
1 answer
3
gatecse asked Oct 30, 2020
182 views
Let $A$ be a real $2 \times 2$ matrix. If $7+5i$ is an eigenvalue of $A$, $\text{det(A)} = \alpha,$ and $\text{trace(A)} = \beta,$ then the value of $2\alpha + 3\beta$ is...
1 votes
1 votes
1 answer
4
gatecse asked Oct 30, 2020
206 views
Let $P = [p_{ij}],$ where $1 \leq i,j \leq n$ is defined by $p_{ij} = i\times j, \forall i,j$ with $n 2.$ The rank of $P$ is _______