edited by
286 views
2 votes
2 votes

The determinant $\begin{vmatrix}
\alpha p + \beta & \alpha & \beta\\
\beta p + \gamma & \beta & \gamma\\
0 & \alpha p + \beta & \beta p + \gamma
\end{vmatrix} = 0$ if

  1. $\alpha,\beta,\gamma$ are in G.P.
  2. $\alpha,\beta,\gamma$ are in A.P.
  3. $\alpha,\beta,\gamma$ are in H.P.
  4. $\alpha \beta,\beta \gamma,\gamma \alpha$ are in G.P.
edited by

1 Answer

3 votes
3 votes
Given that  $\begin{vmatrix}
\alpha p + \beta & \alpha & \beta  \\
\beta p + \gamma & \beta & \gamma \\
0 & \alpha p + \beta  & \beta p + \gamma
\end{vmatrix} = 0$

Expand along with $C_{1},$ we get

$(\alpha p + \beta) \begin{vmatrix}
\beta & \gamma  \\
 \alpha p + \beta & \beta p + \gamma
\end{vmatrix} - (\beta p + \gamma) \begin{vmatrix}
\alpha & \beta  \\
 \alpha p + \beta & \beta p + \gamma
\end{vmatrix} = 0$

Perform the operation $R_{2} \rightarrow R_{2} - R_{1},$ in the first determinant and in the second determinant $R_{2} \rightarrow R_{2} - p R_{1},$ we get

$(\alpha p + \beta) \begin{vmatrix}
\beta & \gamma  \\
 \alpha p & \beta p  
\end{vmatrix} - (\beta p + \gamma) \begin{vmatrix}
\alpha & \beta  \\
\beta & \gamma
\end{vmatrix} = 0$

$\implies (\alpha p + \beta) \begin{vmatrix}
\beta & \gamma  \\
 \alpha p & \beta p  
\end{vmatrix} = (\beta p + \gamma) \begin{vmatrix}
\alpha & \beta  \\
\beta & \gamma
\end{vmatrix}$

$\implies p(\alpha p + \beta) \begin{vmatrix}
\beta & \gamma  \\
 \alpha & \beta   
\end{vmatrix} = (\beta p + \gamma) \begin{vmatrix}
\alpha & \beta  \\
\beta & \gamma
\end{vmatrix}$

$\implies p(\alpha p + \beta)(\beta^{2} - \alpha \gamma) = (\beta p + \gamma) (\alpha \gamma - \beta^{2})$

$\implies p(\alpha p + \beta)(\beta^{2} - \alpha \gamma) = -(\beta p + \gamma) (\beta^{2} - \alpha \gamma)$

$\implies p(\alpha p + \beta)(\beta^{2} - \alpha \gamma) + (\beta p + \gamma) (\beta^{2} - \alpha \gamma) = 0$

$\implies (\beta^{2} - \alpha \gamma) [p(\alpha p + \beta) + (\beta p + \gamma)] = 0$

From above equation, either $(\beta^{2}  -\alpha \gamma) = 0$ or $p(\alpha p + \beta) + (\beta p + \gamma) = 0$

$\implies \beta^{2} - \alpha \gamma = 0$

$\implies \beta^{2} = \alpha \gamma$

$\therefore \alpha,\beta,\gamma$ are in G.P.

So, the correct answer is $(A).$
edited by
Answer:

Related questions

3 votes
3 votes
1 answer
1
gatecse asked Oct 30, 2020
253 views
The value of the determinant $\begin{vmatrix}2\alpha & \alpha + \beta & \alpha + \gamma\\\beta + \alpha & 2\beta & \beta + \gamma\\\gamma + \alpha & \gamma + \beta & 2\ga...
1 votes
1 votes
1 answer
4
gatecse asked Oct 30, 2020
155 views
The determinant of the matrix $A = \begin{pmatrix}\frac{1}{2}& \alpha & 1 & 1 & 1 & 1 & 1 & 1\\0 & -2 & 1 & 1 & 2 & -3 & 8 & -9\\0 & 0 & -88 & 0 & 0 & 0 & 2 & 0\\0 & 0 & ...