edited by
328 views
4 votes
4 votes

Let $\omega$ be the complex root of unity with $\omega \neq 1,$ and $A = [a_{ij}]$ be a $n \times n$ matrix, with $a_{ij} = \omega^{i+j}.$ Then $A^{2} = O,$ when $n$ is equal to _______. (Mark all the appropriate choices)

  1. $3691215$
  2. $1230403$
  3. $7865196$
  4. $4586325$
edited by

1 Answer

Best answer
6 votes
6 votes
Here, $A = [a_{ij}]_{n \times n}$ and  $a_{ij} = \omega^{i+j}$

When $n = 1$

$A = [a_{ij}]_{1 \times 1} = [\omega^{2}]$

$\implies A^{2} = [\omega^{2}]^{2} = [\omega^{4}] = [\omega] \neq O \quad [\because \omega ^{3} = 1]$

When $n = 2$

$A = [a_{ij}]_{2 \times 2} = \begin{bmatrix} \omega^{2} & \omega^{3} \\  \omega^{3}  &  \omega^{4}  \end{bmatrix} = \begin{bmatrix} \omega^{2} & 1 \\ 1 &  \omega \end{bmatrix}$

$ \implies A^{2} = \begin{bmatrix} \omega^{2} & 1 \\ 1 &  \omega \end{bmatrix}\begin{bmatrix} \omega^{2} & 1 \\ 1 &  \omega \end{bmatrix} = \begin{bmatrix} \omega^{4} + 1 & \omega^{2} + \omega  \\ \omega^{2} + \omega &  1 + \omega^{2} \end{bmatrix} \neq O$

When $n = 3$

$A = [a_{ij}]_{3 \times 3} = \begin{bmatrix} \omega^{2} & \omega^{3} & \omega^{4} \\  \omega^{3}  &  \omega^{4} & \omega^{5} \\  \omega^{4}  &  \omega^{5} & \omega^{6}   \end{bmatrix} = \begin{bmatrix} \omega^{2} & 1 & \omega \\ 1  &  \omega & \omega^{2} \\  \omega  &  \omega^{2} & 1 \end{bmatrix}$

$\implies A^{2} = \begin{bmatrix} \omega^{2} & 1 & \omega \\ 1  &  \omega & \omega^{2} \\  \omega  &  \omega^{2} & 1 \end{bmatrix} \begin{bmatrix} \omega^{2} & 1 & \omega \\ 1  &  \omega & \omega^{2} \\  \omega  &  \omega^{2} & 1 \end{bmatrix}$

$\implies A^{2} = \begin{bmatrix} \omega^{4} + 1 + \omega^{2} & \omega^{2} + \omega + \omega^{3} & \omega^{3} + \omega^{2} + \omega \\  \omega^{2} + \omega + \omega^{3}  & 1 + \omega^{2} + \omega^{4} & \omega + \omega^{3} + \omega^{2} \\  \omega^{3} + \omega^{2} + \omega  & \omega + \omega^{3} + \omega^{2} & \omega^{2} + \omega^{4} + 1  \end{bmatrix}$

$\implies A^{2} = \begin{bmatrix} \omega + 1 + \omega^{2} & \omega^{2} + \omega + 1 & 1 + \omega^{2} + \omega \\  \omega^{2} + \omega + 1  & 1 + \omega^{2} + \omega & \omega + 1 + \omega^{2} \\  1 + \omega^{2} + \omega  & \omega + 1 + \omega^{2} & \omega^{2} + \omega + 1  \end{bmatrix}\qquad [\because \omega ^{3} = 1]$

$\implies A^{2} = \begin{bmatrix} 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}_{3 \times 3}\qquad [\because  1 + \omega + \omega ^{2} = 0]$

$\therefore$ When $n$ is multiple of $3,A^{2} = O,$ otherwise $A^{2} \neq O.$

So, the correct answer is $A;C;D.$
selected by
Answer:

Related questions

2 votes
2 votes
1 answer
1
gatecse asked Oct 30, 2020
257 views
If $A =\begin{bmatrix}1 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{bmatrix},$ the value of $(A^{-1})^{T}$ is _____(Mark all the appropriate choices)$A$$Adj\;A$$\left(\left(A^{T}\r...
1 votes
1 votes
1 answer
3
gatecse asked Oct 30, 2020
247 views
If $A$ is an $n \times n$ non-singular matrix, such that $AA^{T} = A^{T}A$ and $B = A^{-1}A^{T},$ then $BB^{T}$ is equal to _____ (Mark all the appropriate choices)$I$$B^...