# UGCNET-Oct2020-II: 3

52 views

Which of the following pairs of propositions are not logically equivalent?

1. $((p \rightarrow r) \wedge (q \rightarrow r))$ and $((p \vee q) \rightarrow r)$
2. $p \leftrightarrow q$ and $(\neg p \leftrightarrow \neg q)$
3. $((p \wedge q) \vee (\neg p \wedge \neg q))$ and $p \leftrightarrow q$
4. $((p \wedge q) \rightarrow r)$ and $((p \rightarrow r) \wedge (q \rightarrow r))$

recategorized

Logical Equivalences Involving Biconditional Statements.

p ↔ q ≡ (p → q) ∧ (q → p)
p ↔ q ≡ ¬p ↔¬q                        ( option 2)
p ↔ q ≡ (p ∧ q) ∨ (¬p ∧¬q)       (option 3)

Logical Equivalences Involving Conditional Statements

p → q ≡ ¬p ∨ q
p → q ≡ ¬q →¬p
¬(p → q) ≡ p ∧¬q
(p → q) ∧ (p → r) ≡ p → (q ∧ r)
(p → r) ∧ (q → r) ≡ (p ∨ q) → r  ( option 1)
(p → q) ∨ (p → r) ≡ p → (q ∨ r)
(p → r) ∨ (q → r) ≡ (p ∧ q) → r (in option 4  there is and instead of or )  hence correct ans is 4

(we can always  check via truth tables or by removing --> and <-> if above formulas are not learned properly)

## Related questions

1
17 views
If $f(x)=x$ is my friend, and $p(x) =x$ is perfect, then correct logical translation of the statement “some of my friends are not perfect” is ______ $\forall _x (f(x) \wedge \neg p(x))$ $\exists _x (f(x) \wedge \neg p(x))$ $\neg (f(x) \wedge \neg p(x))$ $\exists _x (\neg f(x) \wedge \neg p(x))$
Let $G$ be a directed graph whose vertex set is the set of numbers from $1$ to $100$. There is an edge from a vertex $i$ to a vertex $j$ if and only if either $j=i+1$ or $j=3i$. The minimum number of edges in a path in $G$ from vertex $1$ to vertex $100$ is ______ $23$ $99$ $4$ $7$
Consider the following properties: Reflexive Antisymmetric Symmetric Let $A=\{a,b,c,d,e,f,g\}$ and $R=\{(a,a), (b,b), (c,d), (c,g), (d,g), (e,e), (f,f), (g,g)\}$ be a relation on $A$. Which of the following property (properties) is (are) satisfied by the relation $R$? Only $a$ Only $c$ Both $a$ and $b$ $b$ and not $a$