recategorized by
44 views
1 votes
1 votes

There is a network consisting of $4$ routers, the weights (distance) being mentioned on the edges. Which of the following routing tables is/are correct? (Mark all the appropriate choices)
 

  1. $$\overset{\textbf{Routing Table of D}}{\begin{array}{|c|c|c|}\hline
    \textbf{Destination} & \textbf{Distance} & \textbf{Next Hop}
    \\\hline
    \text{A}& 3 & A
    \\\hline
    \text{B}& 7 & A
    \\\hline
    \text{C}& 12 & A
    \\\hline
    \text{D}& 0 & D
    \\\hline
    \end{array}}$$
  2. $$\overset{\textbf{Routing Table of B}}{\begin{array}{|c|c|c|}\hline
    \textbf{Destination} & \textbf{Distance} & \textbf{Next Hop}
    \\\hline
    \text{A}& 4 & A
    \\\hline
    \text{B}& 0 & B
    \\\hline
    \text{C}& 5 & C
    \\\hline
    \text{D}& 7 & A
    \\\hline
    \end{array}}$$
  3. $$\overset{\textbf{Routing Table of A}}{\begin{array}{|c|c|c|}\hline
    \textbf{Destination} & \textbf{Distance} & \textbf{Next Hop}
    \\\hline
    \text{A}& 0 & A
    \\\hline
    \text{B}& 4 & B
    \\\hline
    \text{C}& 9 & B
    \\\hline
    \text{D}& 3 & D
    \\\hline
    \end{array}}$$
  4. $$\overset{\textbf{Routing Table of C}}{\begin{array}{|c|c|c|}\hline
    \textbf{Destination} & \textbf{Distance} & \textbf{Next Hop}
    \\\hline
    \text{A}& 9 & B
    \\\hline
    \text{B}& 5 & B
    \\\hline
    \text{C}& 0 & C
    \\\hline
    \text{D}& 13 & D
    \\\hline
    \end{array}}$$
recategorized by

1 Answer

2 votes
2 votes

$\textbf{Distance Vector Routing Algorithm:-}$ Distance Vector Routing is a dynamic routing algorithm.
   
It works in the following steps:

$\textbf{Step 1:}$ Each router prepares its routing table. By their local knowledge each router knows about-

  •    All the routers present in the network.
  •    Distance to its neighboring routers.

$\textbf{Step 2:}$

  •  Each router exchanges its distance vector with its neighboring routers.
  •  Each router prepares a new routing table using the distance vectors it has obtained from its neighbors.
  • This step is repeated for $(n-2)$ times if there are n routers in the network.
  • After this, routing tables converge / become stable.

Now, coming to the question.

$\textbf{Step 1:}$ Each router prepares its routing table using its local knowledge.

Routing table prepared by each router is shown below-

$\textbf{At router A:}$

$$\overset{\textbf{Routing Table of A}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 0 & A \\\hline
\text{B}& 4  & B \\\hline
\text{C}& \infty & -  \\\hline
\text{D}& 3 & D \\\hline
\end{array}}$$
      
   
$\textbf{At router B:}$

$$\overset{\textbf{Routing Table of B}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 4 & A \\\hline
\text{B}& 0  & B \\\hline
\text{C}& 5  & C \\\hline
\text{D}& 9 & D \\\hline
\end{array}}$$   
   
$\textbf{At router C:}$

$$\overset{\textbf{Routing Table of C}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& \infty & -  \\\hline
\text{B}& 5  & B  \\\hline
\text{C}& 0 & C \\\hline
\text{D}& 13 & D  \\\hline
\end{array}}$$      
   
   
$\textbf{At router D:}$

$$\overset{\textbf{Routing Table of D}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 3 & A   \\\hline
\text{B}& 9 & B   \\\hline
\text{C}& 13 & C \\\hline
\text{D}& 0 & D  \\\hline
\end{array}}$$      
   
$\textbf{Step 2:}$

  • Each router exchanges its distance vector obtained in Step $1$ with its neighbors.
  • After exchanging the distance vectors, each router prepares a new routing table.

This is shown below-

$\textbf{At Router A:}$

  • Router $A$ receives distance vectors from its neighbors $B$ and $D.$
  • Router $A$ prepares a new routing table as

 $$\overset{\textbf{From B}}{\begin{array}{|c|c|c|}\hline
 4  \\\hline
 0 \\\hline
 5 \\\hline
 9 \\\hline
\end{array}} \text{Cost}(A \rightarrow B) = 4 \qquad \overset{\textbf{From D}}{\begin{array}{|c|c|c|}\hline
 3  \\\hline
 9 \\\hline
 13 \\\hline
 0 \\\hline
\end{array}} \text{Cost}(A \rightarrow D) = 3$$   

  • Cost of reaching destination $B$ from router $A = \text{min} \{ 4 + 0 , 3 + 9 \} = 4\; \text{via}\; B.$
  • Cost of reaching destination $C$ from router $A = \text{min} \{4 + 5 , 3 + 13 \} = 9 \;\text{via}\; B.$
  • Cost of reaching destination $D$ from router $A = \text{min} \{ 4 + 9 , 3 + 0 \} = 3\;\text{via}\; D.$   

Thus, the new routing table at router $A$ is-   

$$\overset{\textbf{Routing Table of A}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 0 & A \\\hline
\text{B}& 4  & B \\\hline
\text{C}& 9 & B  \\\hline
\text{D}& 3 & D \\\hline
\end{array}}$$
  
$\textbf{At Router B:}$

  • Router B receives distance vectors from its neighbors $A, C\;\text{and}\; D.$
  • Router $B$ prepares a new routing table as-

 $$\overset{\textbf{From A}}{\begin{array}{|c|c|c|}\hline
 0  \\\hline
 4 \\\hline
 \infty \\\hline
 3 \\\hline
\end{array}} \text{Cost}(B \rightarrow A) = 4 \qquad \overset{\textbf{From C}}{\begin{array}{|c|c|c|}\hline
\infty   \\\hline
5  \\\hline
0 \\\hline
13  \\\hline
\end{array}} \text{Cost}(B \rightarrow C) = 5\qquad \overset{\textbf{From D}}{\begin{array}{|c|c|c|}\hline
 3  \\\hline
 9 \\\hline
 13 \\\hline
 0 \\\hline
\end{array}} \text{Cost}(B \rightarrow D) = 9$$  

  • Cost of reaching destination $A$ from router $B = \text{min} \{ 4 + 0 , 5 + \infty , 9 + 3 \} = 4\; \text{via}\; A.$
  • Cost of reaching destination $C$ from router $B = \text{min} \{4 + \infty, 5 + 0, 9 + 13 \} = 5 \;\text{via}\; C.$
  • Cost of reaching destination $D$ from router $B = \text{min} \{4 + 3 , 5 + 13 , 9 + 0  \} = 7 \;\text{via}\; A.$   

Thus, the new routing table at router $B$ is-   

$$\overset{\textbf{Routing Table of B}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 4 & A \\\hline
\text{B}& 0  & B \\\hline
\text{C}& 5 & C  \\\hline
\text{D}& 7 & A \\\hline
\end{array}}$$   
   
$\textbf{At Router C:}$

  • Router $C$ receives distance vectors from its neighbors $B$ and $C$.
  • Router $C$ prepares a new routing table as

 $$\overset{\textbf{From B}}{\begin{array}{|c|c|c|}\hline
  4 \\\hline
  0 \\\hline
  5 \\\hline
  9 \\\hline
\end{array}} \text{Cost}(C \rightarrow B) = 5 \qquad \overset{\textbf{From D}}{\begin{array}{|c|c|c|}\hline
 3  \\\hline
 9 \\\hline
 13 \\\hline
 0 \\\hline
\end{array}} \text{Cost}(C \rightarrow D) = 13$$     

  • Cost of reaching destination $A$ from router $C = \text{min} \{ 5 + 4 , 13 + 3 \} = 9\;\text{via}\; B.$
  • Cost of reaching destination $B$ from router $C = \text{min} \{ 5 + 0 , 13 + 9 \} = 5 \;\text{via}\;B.$
  • Cost of reaching destination $D$ from router $C = \text{min} \{ 5 + 9 , 13 + 0 \} = 13 \;\text{via}\; D.$

Thus, the new routing table at router $C$ is-   

$$\overset{\textbf{Routing Table of C}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 9 & B \\\hline
\text{B}& 5  & B \\\hline
\text{C}& 0 & C \\\hline
\text{D}& 13 & D \\\hline
\end{array}}$$
         
$\textbf{At Router D:}$

  • Router $D$ receives distance vectors from its neighbors $A, B\;\text{and}\; C.$
  • Router $D$ prepares a new routing table as-   

 $$\overset{\textbf{From A}}{\begin{array}{|c|c|c|}\hline
 0  \\\hline
 4 \\\hline
 \infty \\\hline
 3 \\\hline
\end{array}} \text{Cost}(D \rightarrow A) = 3 \qquad \overset{\textbf{From B}}{\begin{array}{|c|c|c|}\hline
  4 \\\hline
  0 \\\hline
  5 \\\hline
  9 \\\hline
\end{array}} \text{Cost}(D \rightarrow B) = 9 \qquad \overset{\textbf{From C}}{\begin{array}{|c|c|c|}\hline
\infty   \\\hline
5  \\\hline
0 \\\hline
13  \\\hline
\end{array}} \text{Cost}(D \rightarrow C) = 13 $$   

  • Cost of reaching destination $A$ from router $D = \text{min} \{ 3 + 0 , 9 + 4 , 13 + \infty \} = 3 \; \text{via}\; A.$
  • Cost of reaching destination $B$ from router $D = \text{min} \{3 + 4 , 9 + 0 , 13 + 5 \} = 7 \;\text{via}\; A.$
  • Cost of reaching destination $C$ from router $D = \text{min} \{3 + \infty,  9 + 5 , 13 + 0 \} = 13 \;\text{via}\; C.$

Thus, the new routing table at router $D$ is-   

$$\overset{\textbf{Routing Table of D}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 3 & A \\\hline
\text{B}& 7 & A \\\hline
\text{C}& 13 & C  \\\hline
\text{D}& 0 & D  \\\hline
\end{array}}$$   
    
$\textbf{Step 3:}$  

  • Each router exchanges its distance vector obtained in Step $2$ with its neighboring routers.
  • After exchanging the distance vectors, each router prepares a new routing table.   

This is shown below:
     
 $\textbf{At Router A:}$
 

  • Router $A$ receives distance vectors from its neighbors $B$ and $D.$
  • Router $A$ prepares a new routing table as  

 $$\overset{\textbf{From B}}{\begin{array}{|c|c|c|}\hline
 4  \\\hline
 0 \\\hline
 5 \\\hline
 7 \\\hline
\end{array}} \text{Cost}(A \rightarrow B) = 4 \qquad \overset{\textbf{From D}}{\begin{array}{|c|c|c|}\hline
 3  \\\hline
 7 \\\hline
 13 \\\hline
 0 \\\hline
\end{array}} \text{Cost}(A \rightarrow D) = 3$$      

  • Cost of reaching destination $B$ from router $A = \text{min} \{ 4 + 0 , 3 + 7 \} = 4\; \text{via}\; B.$
  • Cost of reaching destination $C$ from router $A = \text{min} \{4 + 5 , 3 + 13 \} = 9 \;\text{via}\; B.$
  • Cost of reaching destination $D$ from router $A = \text{min} \{ 4 + 7 , 3 + 0 \} = 3\;\text{via}\; D.$

Thus, the new routing table at router $A$ is  

$$\overset{\textbf{Routing Table of A}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 0 & A \\\hline
\text{B}& 4  & B \\\hline
\text{C}& 9 & B  \\\hline
\text{D}& 3 & D \\\hline
\end{array}}$$
    
$\textbf{At Router B:}$

  • Router B receives distance vectors from its neighbors $A, C\;\text{and}\; D.$
  • Router $B$ prepares a new routing table as-

 $$\overset{\textbf{From A}}{\begin{array}{|c|c|c|}\hline
 0  \\\hline
 4 \\\hline
 9 \\\hline
 3 \\\hline
\end{array}} \text{Cost}(B \rightarrow A) = 4 \qquad \overset{\textbf{From C}}{\begin{array}{|c|c|c|}\hline
9 \\\hline
5  \\\hline
0 \\\hline
13  \\\hline
\end{array}} \text{Cost}(B \rightarrow C) = 5\qquad \overset{\textbf{From D}}{\begin{array}{|c|c|c|}\hline
 3  \\\hline
 7 \\\hline
 13 \\\hline
 0 \\\hline
\end{array}} \text{Cost}(B \rightarrow D) = 7$$   

  • Cost of reaching destination $A$ from router $B = \text{min} \{ 4 + 0 , 5 + 9 , 7 + 3 \} = 4\; \text{via}\; A.$
  • Cost of reaching destination $C$ from router $B = \text{min} \{4 + 9, 5 + 0, 7 + 13 \} = 5 \;\text{via}\; C.$
  • Cost of reaching destination $D$ from router $B = \text{min} \{4 + 3 , 5 + 13 , 7 + 0  \} = 7 \;\text{via}\; A.$ 

Thus, the new routing table at router $B$ is

$$\overset{\textbf{Routing Table of B}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 4 & A \\\hline
\text{B}& 0  & B \\\hline
\text{C}& 5 & C  \\\hline
\text{D}& 7 & A \\\hline
\end{array}}$$    
 
$\textbf{At Router C:}$

  • Router $C$ receives distance vectors from its neighbors $B$ and $C$.
  • Router $C$ prepares a new routing table as- 

 $$\overset{\textbf{From B}}{\begin{array}{|c|c|c|}\hline
  4 \\\hline
  0 \\\hline
  5 \\\hline
  7 \\\hline
\end{array}} \text{Cost}(C \rightarrow B) = 5 \qquad \overset{\textbf{From D}}{\begin{array}{|c|c|c|}\hline
 3  \\\hline
 7 \\\hline
 13 \\\hline
 0 \\\hline
\end{array}} \text{Cost}(C \rightarrow D) = 13$$  

  • Cost of reaching destination $A$ from router $C = \text{min} \{ 5 + 4 , 13 + 3 \} = 9\;\text{via}\; B.$
  • Cost of reaching destination $B$ from router $C = \text{min} \{ 5 + 0 , 13 + 7 \} = 5 \;\text{via}\;B.$
  • Cost of reaching destination $D$ from router $C = \text{min} \{ 5 + 7 , 13 + 0 \} = 12 \;\text{via}\; B.$   

Thus, the new routing table at router $C$ is-   

$$\overset{\textbf{Routing Table of C}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 9 & B \\\hline
\text{B}& 5 & B \\\hline
\text{C}& 0 & C \\\hline
\text{D}& 12 & B \\\hline
\end{array}}$$ 


$\textbf{At Router D:}$

  • Router $D$ receives distance vectors from its neighbors $A, B\;\text{and}\; C.$
  • Router $D$ prepares a new routing table as-

 $$\overset{\textbf{From A}}{\begin{array}{|c|c|c|}\hline
 0  \\\hline
 4 \\\hline
 9 \\\hline
 3 \\\hline
\end{array}} \text{Cost}(D \rightarrow A) = 3 \qquad \overset{\textbf{From B}}{\begin{array}{|c|c|c|}\hline
  4 \\\hline
  0 \\\hline
  5 \\\hline
  7 \\\hline
\end{array}} \text{Cost}(D \rightarrow B) = 7 \qquad \overset{\textbf{From C}}{\begin{array}{|c|c|c|}\hline
9 \\\hline
5  \\\hline
0 \\\hline
13  \\\hline
\end{array}} \text{Cost}(D \rightarrow C) = 13 $$      

  • Cost of reaching destination $A$ from router $D = \text{min} \{ 3 + 0 , 7 + 4 , 13 + 9 \} = 3 \; \text{via}\; A.$
  • Cost of reaching destination $B$ from router $D = \text{min} \{3 + 4 , 7 + 0 , 13 + 5 \} = 7 \;\text{via}\; A.$
  • Cost of reaching destination $C$ from router $D = \text{min} \{3 + 9,  7 + 5 , 13 + 0 \} = 12 \;\text{via}\; A.$

Thus, the new routing table at router $D$ is  

$$\overset{\textbf{Routing Table of D}}{\begin{array}{|c|c|c|}\hline
\textbf{Destination} & \textbf{Distance} & \textbf{Next Hop} \\\hline
\text{A}& 3 & A \\\hline
\text{B}& 7 & A \\\hline
\text{C}& 12 & A  \\\hline
\text{D}& 0 & D  \\\hline
\end{array}}$$   
      
These will be the final routing tables at each router.

 So, the correct answer is $A;B;C.$

$\textbf{Identifying Unused Links:-}$   
   
After routing tables converge (becomes stable),

  • Some of the links connecting the routers may never be used.
  • In the above example, we can identify the unused links as-   

We have  

  •  The value of next hop in the final routing table of router $A$ suggests that only edges $AB$ and $AD$ are used.
  • The value of next hop in the final routing table of router $B$ suggests that only edges $BA$ and $BC$ are used.
  • The value of next hop in the final routing table of router $C$ suggests that only edge $CB$ is used.
  • The value of next hop in the final routing table of router $D$ suggests that only edge $DA$ is used.   

Thus, edges  $BD$ and $CD$ are never used.  
   
$\textbf{Important Points:-}$   
   
 1.  In Distance Vector Routing,

  • Only distance vectors are exchanged.
  • "Next hop" values are not exchanged.
  • This is because it results in exchanging the large amount of data which consumes more bandwidth.

  2.  While preparing a new routing table-  

  • A router takes into consideration only the distance vectors it has obtained from its neighboring routers.
  • It does not take into consideration its old routing table.     

   3. Some more points regarding distance vector routing algorithm-

  • It involves exchanging of distance vectors between the routers.
  • Distance vector is nothing but an array of distances.
  • The algorithm keeps on repeating periodically and never stops.
  • This is to update the shortest path in case any link goes down or topology changes.
  • Routing tables are prepared total $(n-1)$ times if there are $n$ routers in the given network.
  • This is because shortest path between any $2$ nodes contains at most $n-1$ edges if there are $n$ nodes in the graph.
  • Distance Vector Routing suffers from count to infinity problem.
  • Distance Vector Routing uses UDP at transport layer.
edited by
Answer:

Related questions

1 votes
1 votes
1 answer
3
1 votes
1 votes
1 answer
4
gatecse asked Nov 27, 2020
96 views
Which of the following is/are example(s) of stateless application layer protocol? (Mark all the appropriate choices)$\text{POP3}$$\text{HTTP}$$\text{IMAP}$$\text{UDP}$