Dark Mode

199 views

2 votes

Given the truth table of a Binary Operation \$ as follows:

$$\begin{array}{|l|l|l|l|} \hline {} \text{X} & \text{Y }& \text{X\$Y }\\ \hline \text{1} & \text{0 }& \text{1 }\\ \hline \text{1} & \text{1}& \text{1 }\\ \hline \text{0} & \text{1 }& \text{0 }\\ \hline \text{0} & \text{0 }& \text{1 }\\ \hline \end{array}$$

Identify the matching Boolean Expression.

- $X \$ ┐ Y$
- $┐ X \$ Y$
- $┐ X \$ ┐ Y$
- none of the options

1 vote

Given that,

$$\begin{array}{|c|c|c|} \hline X & Y & X\$ Y \\\hline 1 & 0 & 1 \\\hline 1 & 1 & 1 \\\hline 0 & 1 & 0 \\\hline 0 & 0 & 1 \\\hline \end{array}$$

Here, $X\$ Y\equiv Y \rightarrow X \equiv \neg Y \vee X \equiv X \vee \neg Y$

Now, we can check each options,

- $X \$ \neg Y \equiv \neg Y \rightarrow X \equiv \neg(\neg Y) \vee X\equiv Y \vee X \equiv X \vee Y$
- $\neg X \$ Y \equiv Y \rightarrow \neg X \equiv \neg Y \vee \neg X \equiv \neg X \vee \neg Y$
- $\neg X \$ \neg Y \equiv \neg Y \rightarrow \neg X \equiv \neg(\neg Y) \vee \neg X \equiv Y \vee \neg X \equiv \neg X \vee Y$

None of the option matches.

So, the correct answer is $(D).$