edited by
770 views
7 votes
7 votes

Assuming $i= \sqrt{-1}$ and $t$ is a real number , $$I =\int_{0 }^{\frac{\pi}{3}}e^{it}dt$$

  1. $\frac{\sqrt{3}}{2} + i\frac{1}{2}$
  2. $\frac{\sqrt{3}}{2} - i\frac{1}{2}$
  3. $\frac{1}{2} + i\frac{\sqrt{3}}{2}$
  4. $\frac{1}{2} + \left(1- \frac{\sqrt{3}}{2}\right)$
edited by

1 Answer

Best answer
9 votes
9 votes
$I = \displaystyle{}\int_{0 }^{\frac{\pi}{3}}e^{it}dt = \left[\frac{e^{it}}{i}\right]_{0}^{\frac{\pi}{3}}$

Put, $e^{it} = \cos t + i\sin t$

$ = \left[\dfrac{\cos t + i\sin t}{i}\right]_{0}^{\frac{\pi}{3}}$

$ = \frac{1}{i}\left[\frac{1}{2} + i\frac{\sqrt{3}}{2}  - 1\right]$

$ = \frac{1}{i}\left[-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right] = -i\left[-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right]=  \frac{\sqrt{3}}{2} + i\frac{1}{2}.\quad [\because i^{2}=-1]$
selected by
Answer:

Related questions

2 votes
2 votes
1 answer
1
Arjun asked Sep 23, 2019
724 views
The integral $$\int _0^{\frac{\pi}{2}} \frac{\sin^{50} x}{\sin^{50}x +\cos^{50}x} dx$$ equals$\frac{3 \pi}{4}$$\frac{\pi}{3}$$\frac{\pi}{4}$none of these
2 votes
2 votes
1 answer
2
GO Classes asked Aug 28, 2022
541 views
Which of the following expression evaluates to given integral$$\int \frac{\ln (\ln x)}{x \ln x} d x$$$\dfrac{\ln x}{x}+C$$\frac{1}{2}(\ln \ln x)^{2}+C$$(\ln x)^{2}+C$$(\l...
21 votes
21 votes
2 answers
3
makhdoom ghaya asked Feb 13, 2015
7,644 views
Compute the value of:$$ \large \int \limits_{\frac{1}{\pi}}^{\frac{2}{\pi}}\frac{\cos(1/x)}{x^{2}}dx$$