3,785 views

In the automaton below, $s$ is the start state and $t$ is the only final state.

Consider the strings $u = abbaba, v = bab, \text{and} w = aabb$. Which of the following statements is true?

1. The automaton accepts $u$ and $v$ but not $w$
2. The automaton accepts each of $u, v,$ and $w$
3. The automaton rejects each of $u, v,$ and $w$
4. The automaton accepts $u$ but rejects $v$ and $w$

### 1 comment

Can someone explain DFA to regular expression using state elimination method

$${\begin{array}{l|l|l|l} \textbf{for u}& \textbf{for v}& \textbf{for w} \\\hline \delta(s,abbaba) & \delta(s,bab) & \delta(s,aabb) \\\hline \quad \vdash \delta(x,bbaba) &\quad \vdash \delta(t,ab) &\quad \vdash \delta(x,abb) \\\hline \quad \vdash \delta(x,baba) &\quad \vdash \delta(t,b) &\quad \vdash \delta(s,bb) \\\hline \quad \vdash \delta(x,aba) &\quad \vdash \mathbf{s} - \textbf{rejected} &\quad \vdash \delta(t,b) \\\hline \quad \vdash \delta(s,ba) & &\quad \vdash \mathbf{s} - \textbf{rejected} \\\hline \quad \vdash \delta(t,a) & & \\\hline \quad \vdash \mathbf{t} - \textbf{accepted} & & \\\hline \end{array}}$$Correct Answer: $D$

Is (ab*a)*b(a+b(ab*a)*b)* correct?
right.
@megha : (ab*a+ba*b)*ba* this should be the correct RE.

Only accepts u,it reject v bcoz its not ended in final state and language is not accepting srting w.

correct me if im wrong.