# CMI-2019-DataScience-A: 5

23 views

Consider the polynomials $p(x)=(5x^2+6x+1)(x+1)(2x+3)$ and $q(x)=(5x^2-9x-2)(2x^2+5x+3)$. The set of common divisors of $p(x)$ and $q(x)$ is:

1. $\{2x+3,\;x+1,\;5x+1\}$
2. $\{2x+3,\;x-1,\;5x+1\}$
3. $\{x+3,\;2x+1,\;x-2\}$
4. $\{2x-3,\;x+1,\;5x+1\}$
in Others
edited

$p(x) =(5x^2+6x+1)(x+1)(2x+3)=(5x+1)(x+1)^2(2x+3)$

And

$q(x) =(5x^2-9x-2)(2x^2+5x+3) \\= (5x^2-10x+x-2)(2x^2+2x+3x+3)= (5x+1)(x-2)(2x+3)(x+1)$

$\therefore$ Common divisors are A.$\{ 2x+3, x+1, 5x+1\}$

## Related questions

1
11 views
If the lines $2x+y=2,-5x+3y=4$ and $ax+by=1$ are concurrent then prove that the line $9x-10y=1$ passes through $(a,b).$
Let $X=\{ x_1,x_2,\dots,x_n\}$ and $Y=\{y_1,y_2\}$. The number of surjective functions from $X$ to $Y$ equals $2^n$ $2^n-1$ $2^n-2$ $2^{n/2}$
If $P(A\cup B)=0.7$ and $P(A\cup B^c)=0.9$ then find $P(A).$
Which of the following statements are true for all $n\times n$ matrices $A,B:$ $(A^T)^T=A$ $|A^T|=|A|$ $(AB)^T=A^TB^T$ $(A+B)^T=A^T+B^T$