# UGCNET-Dec2019-II: 1

1 vote
350 views

A basic feasible solution of an $m \times n$ transportation problem is said to be non-degenerate, if basic feasible solution contains exactly _______ number of individual allocation in ______ positions.

1. $m+n+1$, independent
2. $m+n-1$, independent
3. $m+n-1$, appropriate
4. $m-n+1$, independent
in Others
edited

1 vote
1. m+n−1, independent

Definition: Non-Degenerate Basic feasible solution

A basic feasible solution to a (m x n) transportation problem is said to be a non-degenerate if,

(a) The total number of non-negative allocations is exactly m+n-1 and

(b) These m+n-1 allocations are in independent positions.

So ans is B

## Related questions

1
127 views
Consider the following Linear programming problem $\text{(LPP)}$: Maximize $z=x_1+x_2$ Subject to the constraints: $x_1+2x_2 \leq 2000 \\ x_1+x_2 \leq 1500 \\ x_2 \leq 600 \\ \text{and } x_1, x_2 \geq 0$ The solution of the above $\text{LPP}$ is $x_1=750, x_2= 750, z=1500$ $x_1=500, x_2= 1000, z=1500$ $x_1=1000, x_2= 500, z=1500$ $x_1=900, x_2= 600, z=1500$
The Boolean expression $AB+A \overline{B}+\overline{A}C+AC$ is unaffected by the value of the Boolean variable _________. $A$ $B$ $C$ $A, B$ and $C$
What are the greatest lower bound $\text{(GLB)}$ and the least upper bound $\text{(LUB)}$ of the sets $A= \{ 3, 9, 12 \}$ and $B=\{1,2,4,5,10 \}$ if they exist in poset $(z^+, / )$? $\text{A(GLB – 3, LUB – 36); B(GLB – 1, LUB – 20)}$ $\text{A(GLB – 3, LUB – 12); B(GLB – 1, LUB – 10)}$ $\text{A(GLB – 1, LUB – 36); B(GLB – 2, LUB – 20)}$ $\text{A(GLB – 1, LUB – 12); B(GLB – 2, LUB – 10)}$
Let $P$ be the set of all people. Let $R$ be a binary relation on $P$ such that $(a, b)$ is in $R$ if $a$ is a brother of $b$. Is $R$ symmetric transitive, an equivalence relation, a partial order relation? $\text{NO, NO, NO, NO}$ $\text{NO, NO, YES, NO}$ $\text{NO, YES, NO, NO}$ $\text{NO, YES, YES, NO}$