edited by
242 views

1 Answer

2 votes
2 votes

$A=$$\large \bigl(\begin{smallmatrix} 4 &-3 & -3\\ 3 &-2 &-3 \\ -1 &1 & 2 \end{smallmatrix}\bigr)$

$A^{2}=$$\large \bigl(\begin{smallmatrix} 4 &-3 & -3\\ 3 &-2 &-3 \\ -1 &1 & 2 \end{smallmatrix}\bigr)$$\large \bigl(\begin{smallmatrix} 4 &-3 & -3\\ 3 &-2 &-3 \\ -1 &1 & 2 \end{smallmatrix}\bigr)$

        $=$ $\large \bigl(\begin{smallmatrix} 10 &-9 & -9\\ 9 &-8 &-9 \\ -3 & 3 & 4 \end{smallmatrix}\bigr)$

So , $A^{2}\neq A$ So , It is not idempotent matrix .


Now Find the Eigen values:-

$\begin{vmatrix} 4-\lambda &-3 &-3 \\ 3&-2-\lambda &-3 \\ -1&1 & 2-\lambda \end{vmatrix}$ $=0$

 $(4\lambda ^{2}-\lambda ^{3}+\lambda -4+9-9\lambda -3+3\lambda )=0$

$(2-\lambda ^{3}+4\lambda ^{2}-5\lambda )=0$

$(\lambda ^{3}-4\lambda ^{2}+5\lambda -2 )=0$

$\lambda ^{2}(\lambda -1)-3\lambda (\lambda -1)+2(\lambda -1)=0$

$(\lambda -1)(\lambda ^{2}-3\lambda +2)=0$

$(\lambda -1)(\lambda ^{2}-2\lambda-\lambda +2)=0$

$(\lambda -1)(\lambda -1)(\lambda -2)=0$

So the eigen values are $2,1,1$ .

Now we know that ,

A matrix is nilopotent if and only if all its eigen value is zero . 

Link:- https://math.stackexchange.com/questions/1265679/why-are-eigenvalues-of-nilpotent-matrices-equal-to-zero

Now the eigen values are not zero so it is not nilopotent as well.

So option $B ,C$ are gone .


Now we need to compute eigen vector for the eigen values .

Lets try with $\lambda=1$;

$(A-\lambda I)X=0$

$\begin{pmatrix} 3 &-3 &-3 \\ 3&-3 &-3 \\ -1& 1& 1 \end{pmatrix}$$X=0$

$\begin{pmatrix} 3 &-3 &-3 \\ 0&0 &0 \\ 0& 0& 0 \end{pmatrix}$$\begin{pmatrix} x\\ y\\ z \end{pmatrix}$ $=0$

So $x-y-z=0$

Free variables are y,z .

So , $y=k1,z=k2$ 

So , $x=k1+k2$

So , $X$=$\begin{pmatrix} k1+k2\\ k1\\ k2 \end{pmatrix}$

       $X=$ $k1\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}$ $+$ $k2\begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}$

Hence the basis for 1-eigen space $B1=\left \{ v1,v2 \right \}$, where  $v1=\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}$ , $v2=\begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}$

Now compute eigen vector space for $\lambda=2$,

$(A-\lambda I)X=0$

$\begin{pmatrix} 2 &-3 & -3\\ 3 & -4 &-3 \\ -1&1 & 0 \end{pmatrix}X=0$

$\begin{pmatrix} 2 &-3 & -3\\ -1 & 1 &0 \\ -1&1 & 0 \end{pmatrix}X=0$

$\begin{pmatrix} 2 &-3 & -3\\ -1 & 1 &0 \\ 0&0 & 0 \end{pmatrix}X=0$

$\begin{pmatrix} 2 &-3 & -3\\ 0 & -1 &-3 \\ 0&0 & 0 \end{pmatrix}X=0$

$2x-3y-3z=0$

$y+3z$=0

$z$ be the free variable .

So ,$z=k$

       $y=-3k$

        $x=-3k$

So , the eigen vector is $X=\begin{pmatrix} -3k\\ -3k\\ k \end{pmatrix}$

                                       $X=k\begin{pmatrix} -3\\ -3\\ 1 \end{pmatrix}$

                                       So, $v3=\begin{pmatrix} -3\\ -3\\ 1 \end{pmatrix}$

So the eigen vector basis $v1,v2,v3$ are linearly independent.$v1,v2$ forms the basis for the eigen value 1 and $v3$ is not contained in 1-eigenspace because its eigen value is 2 . So Diagonilazation theorem says 

$A=CDC^{-1}$ where C=$\begin{pmatrix} 1 &1 & -3\\ 1 & 0 &-3 \\ 0&1 & 1 \end{pmatrix}$ ,D= $\begin{pmatrix} 1 &0 & 0\\ 0 & 1 &0 \\ 0& 0& 2 \end{pmatrix}$

So the given matrix is diagonalizable. 

Correct answer is (A) .

Answer:

Related questions

0 votes
0 votes
0 answers
1
soujanyareddy13 asked Sep 27, 2021
78 views
There exists a nonzero ideal $I \subseteq \mathbb{Z}[i]$ such that the quotient ring $\mathbb{Z}[i]/I$ is infinite $($here $i$ is a square root of $-1$ in $\mathbb{C})$.
0 votes
0 votes
1 answer
2
soujanyareddy13 asked Sep 27, 2021
531 views
For each positive integer $n$, let$$s_n=\frac{1}{\sqrt{4n^2-1^2}}+\frac{1}{\sqrt{4n^2-2^2}}+\dots+\frac{1}{\sqrt{4n^2-n^2}}$$Then the $\displaystyle \lim_{n\rightarrow \i...
0 votes
0 votes
0 answers
3
soujanyareddy13 asked Sep 27, 2021
257 views
The number of bijective maps $g:\mathbb{N}\rightarrow\mathbb{N}$ such that$$\sum_{n=1}^\infty\frac{g(n)}{n^2}<\infty$$is$0$$1$$2$$\infty$
2 votes
2 votes
1 answer
4
soujanyareddy13 asked Sep 27, 2021
300 views
The value of $$\displaystyle\lim_{n\rightarrow\infty}\prod_{k=2}^{n}\left(1-\frac{1}{k^2}\right)$$is$1/2$$1$$1/4$$0$