edited by
127 views
0 votes
0 votes

Let $A$ be the set of all real numbers $\lambda \in [0,1]$ such that

$$\displaystyle\lim_{p\rightarrow 0}\frac{\log(\lambda2^p+(1-\lambda)3^p)}{p}=\lambda \log2+(1-\lambda)\log3$$

Then

  1. $A=\{0,1\}$
  2. $A=\{0,\frac{1}{2},1\}$
  3. $A=\{0,\frac{1}{3},\frac{1}{2},\frac{2}{3},1\}$
  4. $A=[0,1]$
edited by

Please log in or register to answer this question.

Answer:

Related questions

0 votes
0 votes
0 answers
1
soujanyareddy13 asked Sep 27, 2021
114 views
There exists a continuous function$$f:[0,1]\rightarrow \{A\in M_2(\mathbb{R})|A^2=A\}$$such that $f(0)=0$ and $f(1)=\text{Id}$.
0 votes
0 votes
1 answer
2
soujanyareddy13 asked Sep 27, 2021
528 views
For each positive integer $n$, let$$s_n=\frac{1}{\sqrt{4n^2-1^2}}+\frac{1}{\sqrt{4n^2-2^2}}+\dots+\frac{1}{\sqrt{4n^2-n^2}}$$Then the $\displaystyle \lim_{n\rightarrow \i...
0 votes
0 votes
0 answers
3
soujanyareddy13 asked Sep 27, 2021
257 views
The number of bijective maps $g:\mathbb{N}\rightarrow\mathbb{N}$ such that$$\sum_{n=1}^\infty\frac{g(n)}{n^2}<\infty$$is$0$$1$$2$$\infty$
2 votes
2 votes
1 answer
4
soujanyareddy13 asked Sep 27, 2021
298 views
The value of $$\displaystyle\lim_{n\rightarrow\infty}\prod_{k=2}^{n}\left(1-\frac{1}{k^2}\right)$$is$1/2$$1$$1/4$$0$