edited by
531 views
0 votes
0 votes

For each positive integer $n$, let

$$s_n=\frac{1}{\sqrt{4n^2-1^2}}+\frac{1}{\sqrt{4n^2-2^2}}+\dots+\frac{1}{\sqrt{4n^2-n^2}}$$

Then the $\displaystyle \lim_{n\rightarrow \infty}s_n$ equals

  1. $\pi/2$
  2. $\pi/6$
  3. $1/2$
  4. $\infty$
edited by

1 Answer

3 votes
3 votes

Answer: B

$\large{\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1}{\sqrt{4n^2 – 1^2}} + \frac{1}{\sqrt{4n^2 – 2^2}} + \dots + \frac{1}{\sqrt{4n^2 – n^2}}}$

                       $= \large{\lim_{n \to \infty} \sum_{r = 1}^{n} \frac{1}{\sqrt{4n^2 – r^2}}}$            -------- ($\text{take } n^2 \text{ common from root}$)

                       $= \large{\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n}.\frac{1}{\sqrt{4 - (\frac{r}{n}})^2}}$

$[\text{Converting limit of sum as definite integral}]$

$\text{Let }\large{ \frac{r}{n} = x, \frac{1}{n} = dx}$

$\text{When r = 1, }\large{x =  \lim_{n \to \infty} \frac{1}{n} = 0}$

$\text{When r = n, }\large{x = \lim_{n \to \infty} \frac{n}{n} = 1}$

 

$\large{\int_{0}^{1} \frac{dx}{\sqrt{4 – x^2}} = {\sin^{-1}\frac{x}{2}} \Big|_0^1 = \frac{\pi}{6}}$

edited by
Answer:

Related questions

0 votes
0 votes
0 answers
1
soujanyareddy13 asked Sep 27, 2021
257 views
The number of bijective maps $g:\mathbb{N}\rightarrow\mathbb{N}$ such that$$\sum_{n=1}^\infty\frac{g(n)}{n^2}<\infty$$is$0$$1$$2$$\infty$
2 votes
2 votes
1 answer
2
soujanyareddy13 asked Sep 27, 2021
302 views
The value of $$\displaystyle\lim_{n\rightarrow\infty}\prod_{k=2}^{n}\left(1-\frac{1}{k^2}\right)$$is$1/2$$1$$1/4$$0$
0 votes
0 votes
0 answers
3
soujanyareddy13 asked Sep 27, 2021
185 views
The set $$S=\{x\in \mathbb{R}|x>0\text{ and } (1+x^2) \tan(2x)=x\}$$isemptynonempty but finitecountably infiniteuncountable
0 votes
0 votes
0 answers
4
soujanyareddy13 asked Sep 27, 2021
234 views
The dimension of the real vector space$V=\{f:(-1,1)\rightarrow\mathbb{R}|f$ is infinitely differentiable on $(-1,1)$ and $f^{(n)}(0)=0$ for all $n\geq 0\}$is$0$$1$greater...