option C

Dark Mode

rsansiya111
asked
in Unknown Category
Dec 6, 2021

142 views
0 votes

let,

$\log_{17}275 =x$

so,$17^{x}=275$ …………….(1)

$\log_{19}375=y$

so,$19^{y}=375$ …………………...(2)

(1)$\div$(2)

$\frac{17^{x}}{19^{y}}=\frac{275}{375}< 1$

so,$17^{x}<19 ^{y}$

taking log both sides respect to base 19,

$x*\log_{19}17< y$

so, $\frac{x}{y}< 1$ ………..[as $\log_{17}19 > 1$]

so,$x< y$

[note ,

$\log_{17}275=1.984$

$\log_{19}375=2.012$

if you are allowed to use calculator which i believe you are not]

$\log_{17}275 =x$

so,$17^{x}=275$ …………….(1)

$\log_{19}375=y$

so,$19^{y}=375$ …………………...(2)

(1)$\div$(2)

$\frac{17^{x}}{19^{y}}=\frac{275}{375}< 1$

so,$17^{x}<19 ^{y}$

taking log both sides respect to base 19,

$x*\log_{19}17< y$

so, $\frac{x}{y}< 1$ ………..[as $\log_{17}19 > 1$]

so,$x< y$

[note ,

$\log_{17}275=1.984$

$\log_{19}375=2.012$

if you are allowed to use calculator which i believe you are not]