500 views

1 Answer

Best answer
3 votes
3 votes

Answer : $a_n=A(-6)^n+B(1)^n$

Reference :

  1. https://www.youtube.com/watch?v=Pp4PWCPzeQs
  1. https://www.youtube.com/watch?v=LNOZlxyrkPA

Solution :

$a_n=-5a_{n-1}+6a_{n-2}$

$\therefore a_n+5a_{n-1}-6a_{n-2}=0$

Let $G(x)$ be generating function of sequence $a_0,a_1,a_2,a_3...$

$G(x)$             $=$    $a_0$ + $a_1x$ +  $a_2x^2$  +    $a_3x^3…$

$5xG(x)$        $=$           $5a_0x$ + $5a_1x^2$ + $5a_2x^3$ +  $5a_3x^4…$

$-6x^2G(x)$  $=$                      – $6a_0x^2$ – $6a_1x^3$ – $6a_2x^4$ – $6a_3x^5…$

$\therefore (1+5x-6x^2)G(x)$

$=a_0+a_1x + 5a_0x + (a_2+5a_1-6a_0)x^2 + (a_3+5a_2-6a_1)x^3 + ...$

$=a_0+a_1x + 5a_0x +$                               $(0)x^2 +$                               $(0)x^3 + ...$

$=a_0+(a_1+ 5a_0)x$

$G(x)=\frac{a_0+(a_1+ 5a_0)x}{(1+5x-6x^2)}=\frac{a_0+(a_1+ 5a_0)x}{(1+6x)(1-x)}=\frac{A}{(1+6x)}+\frac {B}{(1-x)}$

By partial fraction $A=\frac{6a_0-(a_1+ 5a_0)}{7}=\frac {a_0-a_1}{7},B=\frac {a_0+(a_1+ 5a_0)}{7}=\frac{6a_0+a_1}{7}$ but lets ignore that.

Expansion of series $(1-kx)^{-1}=\sum_{n=0}^{\infty}k^nx^n$

$\therefore G(x)=A\sum_{n=0}^{\infty}(-6)^nx^n+B\sum_{n=0}^{\infty}(1)^nx^n=\sum_{n=0}^{\infty}(A(-6)^n+B(1)^n)x^n$

$\therefore a_n=A(-6)^n+B(1)^n$

selected by

Related questions

7 votes
7 votes
2 answers
1
4 votes
4 votes
1 answer
2
2 votes
2 votes
1 answer
3
0 votes
0 votes
1 answer
4
UK asked Jan 28, 2016
944 views
Number of solutions are there of x+y+z=17 in positive integers are_________Here in this do we have to take constraints of x>=1,y>=1,z>=1?