edited by
371 views
1 votes
1 votes

Consider the formula $\exists x \exists y \exists z(\text{R}(x, y) \wedge \text{R}(z, y) \wedge \text{R}(x, z) \wedge \neg \text{R}(z, x)).$

For which of the following interpretations, is this formula true?

$(\text{N}$ is set of positive integers, $\text{U}$ is the domain of discourse, $\text{P(N)}$ is power set of $\text{N})$

  1. $\text{U} = \text{N}, \text{R}(x,y) : x < y.$
  2. $\text{U} = \text{N, R}(x,y) : y = x+1.$
  3. $\text{U} = \text{P(N), R(A, B) : A} \subseteq \text{B}.$
  4. $\text{U} = $ the set of all bit strings of length at least one, $\text{R}(x,y) : y = x0 \;\text{or}\; y = x1.$
edited by

1 Answer

1 votes
1 votes

given – ∃x∃y∃z ( R(x,y)∧R(z,y)∧R(x,z)∧¬R(z,x) ).

we only need one set of x, y, z to make this true.

Option A: U = N, R(x,y) : x < y

R(x,y)∧R(z,y)∧R(x,z)∧¬R(z,x) → (x<y) ∧ (z<y) ∧ (x<z) ∧ (z>=x). any value of x, y, z such that x < z < y makes this true.

Option B: U = N, R(x,y) : y = x + 1

R(x,y)∧R(z,y)∧R(x,z)∧¬R(z,x) → (y=x+1) ∧ (y=z+1) ∧ (z=x+1) ∧ (x≠z+1).

if this (y=x+1) ∧ (y=z+1) is true, then z = x which makes this (z=x+1) false. Thus, the formula will always be false in this case.

Option C: U = P(N), R(A,B) : A ⊆ B.

R(x,y)∧R(z,y)∧R(x,z)∧¬R(z,x) → (x⊆y) ∧ (z⊆y) ∧ (x⊆z) ∧ ¬(z⊆x). any set x, y, z such that x ⊂ z and z ⊆ y makes this true.

Option D: U = set of all binary strings of length >=1, R(x,y) : y = x0 or y = x1. ( here x0 = x concatination 0 )

R(x,y)∧R(z,y)∧R(x,z)∧¬R(z,x) → (y=x0 v y=x1) ∧ (y=z0 v y=z1) ∧ (z=x0 v z=x1) ∧ (x=z0 v x=z1).

if this (y=x0 v y=x1) ∧ (y=z0 v y=z1) is true, then len(z) = len(x) which makes this (z=x0 v z=x1) false. Thus, the formula will always be false in this case.

Answer:- A, C

edited by
Answer:

Related questions

3 votes
3 votes
2 answers
3
GO Classes asked Apr 14, 2022
377 views
Consider the following statement $\text{S}$ in an universe $\text{U}.$$\text{S} : \forall x \forall y (x = y)$What is the maximum cardinality of $\text{U}$ such that $\te...