retagged by
440 views
4 votes
4 votes

Let $\text{G}$ be a group under binary operation $\ast .$ Let $g \in \text{G}.$

We define $\langle g \rangle$ as follows :

$\langle g \rangle  = \{g^{n} \mid n \in \mathbb{Z}\}.$

Which of the following is/are true about $\langle g \rangle$ under binary operation $\ast \;?$

  1. $\langle g \rangle$ is also a group.
  2. $\langle g \rangle$ is cyclic subgroup of $\text{G}.$
  3. $\langle g \rangle$ is abelian.
  4. If $\text{H} \leq \text{G}$ and $g \in \text{H},$ then $ \langle g \rangle \leq \text{H}.$
retagged by

1 Answer

3 votes
3 votes

$\color{red}{\text{Detailed Video Solution:}}$

Watch the following lecture at 01:13:20:

Lecture 7 - Lagrange's Theorem, Abelian Definitions & Practice | Group Theory | GO Classes - Discrete Mathematics

This is a very basic and standard result in group theory.

Let $\text{G}$ be a group and let $g \in \text{G}.$ The cyclic subgroup generated by $g$ is the subset :

$\langle g \rangle  = \{g^{n} \mid n \in \mathbb{Z}\}$

The following four statements are true for $\langle g \rangle:$

  1. The cyclic subgroup $\langle g \rangle$ generated by $g$ is a subgroup of $\text{G}.$
  2. $g \in \langle g \rangle.$
  3. If $\text{H} \leq \text{G}$ and $g \in \text{H},$ then $\langle g \rangle \leq \text{H}.$ Hence $\langle g \rangle$ is the smallest subgroup of $\text{G}$ containing $g.$
  4. $\langle g \rangle$ is abelian.


edited by
Answer:

Related questions

2 votes
2 votes
1 answer
3