edited by
1,711 views

3 Answers

Best answer
40 votes
40 votes

selected by
11 votes
11 votes
$1 + (1 + b)r + (1 + b + b^2)r^2 + (1 + b + b^2 + b^3)r^3 + ... \infty$

= $\sum_{i=0}^{\infty} (\sum_{j=0}^{i} b^j)r^i$

= $\sum_{i=0}^{\infty} (\frac{1-b^{i+1}}{1-b})r^i$

= $\frac{1}{1-b} \sum_{i=0}^{\infty} (r^i - b^{i+1}r^i)$

= $\frac{1}{1-b} ( \sum_{i=0}^{\infty} r^i - b\sum_{i=0}^{\infty} b^i r^i)$

= $\frac{1}{1-b} \times (\frac{1}{1-r} - \frac{b}{1-br})$

= $\frac{1}{1-b} \times \frac{1-b}{(1-r)(1-br)}$

= $\frac{1}{(1-r)(1-br)}$
edited by
3 votes
3 votes
Let     ${S=1 + (1+b)r + (1+b+b}$$^{2}$${)r}$$^{2}$${+…..}$

 

${S=1 + r+br + r}$$^{2}$${+br}$$^{2}$${+b}$$^{2}$${r}$$^{2}$${+r}$$^{3}$${+br}$$^{3}$${+b}$$^{2}$${r}$$^{3}$${+b}$$^{3}$${r}$$^{3}$${+…..}$

${S=1 + r+r}$$^{2}$${+……..+br(1+}$${r+}$${r}$$^{2}$${+…..)+b}$$^{2}$${r}$$^{2}$${(1+}$${r+}$${r}$$^{2}$${+…..)+b}$$^{3}$${r}$$^{3}$${(1+r+r}$$^{2}$${+ …..)+…..}$

${S=(1+r+r}$$^{2}$${+…...)(1+br+b}$$^{2}$${r}$$^{2}$${+b}$$^{3}$${r}$$^{3}$${+…...)}$

now let ${X= 1+r+r}$$^{2}$${+….}$

then ${Xr=r+r}$$^{2}$${+r}$$^{3}$${+….}$

${X-Xr=1}$

${X = 1/(1-r)}$

 

Now let ${Y=1+br+b}$$^{2}$${r}$$^{2}$${+….}$

then ${Ybr=br + b}$$^{2}$${r}$$^{2}$${+b}$$^{3}$${r}$$^{3}$${+….}$

${Y-Ybr=1}$

${Y=1/(1-br)}$

 

Since ${S= XY}$

${S=1/(1-r)(1-br)}$

${Ans : A}$
Answer:

Related questions

5 votes
5 votes
2 answers
1
13 votes
13 votes
3 answers
4