edited by
501 views
1 votes
1 votes

If $(^{n}C_{0} + ^{n}C_{1}) (^{n}C_{1} + ^{n}C_{2}) \cdots (^{n}C_{n-1} + ^{n}C_{n}) = k \;  ^{n}C_{0} \; ^{n}C_{1} \cdots \; ^{n}C_{n-1},$ then $k$ is equal to

  1. $\frac{(n+1)^{n}}{n!}$
  2. $\frac{n^{n}}{n!}$
  3. $\frac{(n+1)^{n}}{nn!}$
  4. $\frac{(n+1)^{n+1}}{n!}$
edited by

1 Answer

1 votes
1 votes

Answer : (A)

First let’s simplify ${n \choose k} + {n \choose k+1} = \frac{n!}{(n-k)! * k!} + \frac{n!}{(n-k-1)!*(k+1)!}$

                                                         $= \frac{(k+1)n! + (n-k)n!}{(n-k)!*(k+1)!} = \frac{n!(k+1+n-k)}{(n-k)!*(k+1)!}$

                            $\therefore {n\choose k} + {n \choose k+1} = \frac{(n+1)*n!}{(n-k)!*(k+1)!}$    ------------  (eq 1)

 

Now simplifying LHS using (eq 1)

$({n\choose 0} + {n\choose 1})({n\choose 1} + {n\choose 2}) … ({n\choose n-1} + {n\choose n}) = (\frac{(n+1)*n!}{n!*1!})(\frac{(n+1)*n!}{(n-1)!*2!})...(\frac{(n+1)*n!}{(1)!*n!})$   ------------ (eq 2)

 

Solving RHS

$k*{n\choose 0}*{n \choose 1}*...*{n\choose n-1} = k*(\frac{n!}{n!*0!})*(\frac{n!}{(n-1)!*1!})*(\frac{n!}{(n-2)!*2!})*...*(\frac{n!}{1!*(n-1)!})$  ------------  (eq 3)

 

Equating (eq 2) and (eq 3)  we get –

$(\frac{(n+1)*n!}{n!*1!})(\frac{(n+1)*n!}{(n-1)!*2!})...(\frac{(n+1)*n!}{(1)!*n!})  = k*(\frac{n!}{n!*0!})*(\frac{n!}{(n-1)!*1!})*(\frac{n!}{(n-2)!*2!})*...*(\frac{n!}{1!*(n-1)!})$

Cancelling terms from LHS and RHS we get

$\frac{(n+1)^n}{n!} = k*1$

$\therefore k = \frac{(n+1)^n}{n!}$ 

 
edited by
Answer:

Related questions

0 votes
0 votes
2 answers
1
admin asked Jul 23, 2022
748 views
Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $f(x) = \frac{2 – \sqrt{x+4}}{\sin 2x}$ for all $x \neq 0.$ Then the value of $f(0)$ ...
0 votes
0 votes
2 answers
2
admin asked Jul 23, 2022
1,109 views
A person throws a pair of fair dice. If the sum of the numbers on the dice is a perfect square, then the probability that the number $3$ appeared on at least one of the d...
0 votes
0 votes
2 answers
3
admin asked Jul 23, 2022
515 views
Consider the system of linear equations: $x + y + z = 5, \quad 2x + 2y + 3z = 4$. Thenthe system is inconsistentthe system has a unique solutionthe system has infinitely ...
0 votes
0 votes
1 answer
4
admin asked Jul 23, 2022
418 views
If $g’ (x) = f(x)$ then $\int x^{3} f(x^{2}) dx$ is given by$x^{2} g(x^{2}) – \int xg(x^{2}) dx + C$$ \frac{1}{2} x^{2} g(x^{2}) – \int xg(x^{2}) dx + C$$2x^{2} g(x...