234 views

1 Answer

Best answer
2 votes
2 votes
Let $S(n)$ be the statement : $2n< (n+1)!$    $n\geq 2$

Basic Step $S(1)$ :

LHS$=2*2=4$

RHS$=(2+1)!=6$

$LHS< RHS$ (verified).

Inductive Step :

Let us assume $S(k)$ is true .

So, $2k< (k+1)!$

 Now,$S(k+1)$:

 LHS::-

$2(k+1)$

$=2k+2< (k+1)!+2<(k+1)!*(k+2)<(k+2)!$

So,$S(k+1)$ is true whenever $S(k)$ is true.

So, $2n<(n+1)!;$$n\geq 2$ (proved)
selected by

Related questions

0 votes
0 votes
0 answers
1
kidussss asked Jul 29, 2022
315 views
Let y in the form of $a + bi$, where $a$ and $b$ are real numbers, be the cubic roots of complex number $z^{20},$ where $z=\frac{2}{4 + 3i}.$ Find $a + b.$
0 votes
0 votes
1 answer
2
kidussss asked Jul 29, 2022
234 views
Simplify $(A\cup B)\cap (A\cup B')\cap (A - B)$ for a given non empty sets $A$ and $B$, where $(A\cap B) = \varnothing .$
0 votes
0 votes
0 answers
4