in Linear Algebra recategorized ago by
68 views
1 vote
1 vote

Let $\mathbb{R}$ denote the set of real numbers. Let $d \geq 4$ and $\alpha \in \mathbb{R}$. Let

$$ S=\left\{\left(a_0, a_1, \ldots, a_d\right) \in \mathbb{R}^{d+1}: \sum_{i=0}^d a_i \alpha^i=0 \text { and } \sum_{i=0}^d i a_i \alpha^{i-1}=0\right\} \text {. } $$

Then,

  1. $S$ is finite or infinite depending on the value of $\alpha$
  2. $S$ is a $2$-dimensional vector subspace of $\mathbb{R}^{d+1}$
  3. $S$ is a $d$-dimensional vector subspace of $\mathbb{R}^{d+1}$
  4. $S$ is a $(d-1)$-dimensional vector subspace of $\mathbb{R}^{d+1} $
  5. For each $\left(a_0, a_1, \ldots, a_d\right) \in S$, the function

$$ x \mapsto \sum_{i=0}^d a_i x^i $$

has a local optimum at $\alpha$

in Linear Algebra recategorized ago by
by
68 views

Please log in or register to answer this question.

Answer:

Related questions