Ans (B)
$(a+b+c)^2$ should be $\geq 0.$
$ \therefore a^2 + b^2 +c^2 + 2ab +2bc + 2ca \geq 0$
Given $a^2 + b^2 +c^2 = 1$ therefore $1+ 2(ab+bc+ca)\geq 0$
$\implies ab+bc+ca\geq -\frac{1}{2}$
Now to find the upper limit,
$(a-b)^2+(b-c)^2+(c-a)^2 \geq 0$
Expanding we get, $2(a^2 + b^2 + c^2) - 2(ab+bc+ca) \geq 0$
$\implies 2-2(ab+bc+ca)\geq 0$
$\implies ab+bc+ca\leq 1$
Answer B. [-1/2,1]