378 views

2 Answers

2 votes
2 votes
Let ,

$y=\lim_{{x->0}}(1-\sin x\cos x)^{cosec2x}$

$\log_{e}y=\lim_{{x->0}}\log_{e}(1-\sin x\cos x)^{cosec2x}$

$\log_{e}y=\lim_{{x->0}}cosec2x\log_{e}(1-\sin x\cos x)$

$\log_{e}y=\lim_{{x->0}}\frac{\log_{e}(1-\sin x\cos x)}{sin2x}$

 

$\log_{e}y=\lim_{{x->0}}\frac{\log_{e}(1-\sin x\cos x)}{2sinxcosx}$

$\log_{e}y=\frac{1}{2}\lim_{{x->0}}\frac{\log_{e}(1-\sin x\cos x)}{sinxcosx}$

Let , $z=\sin x\cos x$ ,

    now as , $x\rightarrow 0$ then $z\rightarrow 0$ .

So,$\log_{e}y=\frac{1}{2}\lim_{z\rightarrow 0}\frac{\log_{e}(1-z)}{z}$

Now, $\lim_{z\rightarrow 0}\frac{\log_{e}(1-z)}{z}=-1$  [ Its easy so not calculating]

So,$\log_{e}y=\frac{1}{2}(-1)=-\frac{1}{2}$

So, $\large y=e^{-\frac{1}{2}}$  ………………….………….. (D) is the answer ..

Related questions

0 votes
0 votes
1 answer
1
Mk Utkarsh asked May 26, 2019
572 views
$\LARGE \lim_{n \rightarrow \infty} \frac{n^{\frac{3}{4}}}{log^9 n}$
0 votes
0 votes
1 answer
2
MIRIYALA JEEVAN KUMA asked Oct 14, 2018
531 views
Find the limit$\operatorname { lit } _ { x \rightarrow 1 } \left\{ \left( \frac { 1 + x } { 2 + x } \right) ^ { \left( \frac { 1 - \sqrt { x } } { 1 - x } \right) } \righ...
6 votes
6 votes
1 answer
3
sumit chakraborty asked Jan 26, 2018
655 views
The value of $\lim_{x\rightarrow \infty }\left ( \frac{4^{x+2} + 3^{x}}{4^{x-2}} \right )$ is ____________
3 votes
3 votes
1 answer
4
vishal chugh asked Jan 22, 2018
558 views