edited by
5,644 views
10 votes
10 votes

Let $X$ be a set and $2^{X}$ denote the powerset of $X$.

Define a binary operation $\Delta$ on $2^{X}$ as follows:
\[
A \Delta B=(A-B) \cup(B-A) \text {. }
\]
Let $H=\left(2^{X}, \Delta\right)$. Which of the following statements about $H$ is/are correct?

  1. $H$ is a group.
  2. Every element in $H$ has an inverse, but $H$ is NOT a group.
  3. For every $A \in 2^{X},$ the inverse of $A$ is the complement of $A$.
  4. For every $A \in 2^{X},$ the inverse of $A$ is $A$.
edited by

2 Answers

12 votes
12 votes

This is proof regarding the given question.

Here Binary operation $\Delta$ is defined on the power set of set $X.$ i.e. $2^X.$

Now, say, there are two elements $A$ and $B$ of the set $2^X$ and 

$A \Delta B = (A-B)  \cup (B-A) = (A \cup B) \  – \ (A \cap B) $

$1) $ Closure:

Since, $2^X$ is a power set of set $X$, so it contains all the subsets of set $X$ and so, $(A \cup B) \in 2^X$ and $(A \cap B) \in 2^X$

and so,  $(A \cup B) \  – \ (A \cap B) \in 2^X $ and hence, $A \Delta B \in 2^X \ \ $ $\forall A,B \in 2^X $

$2) $ Associativity:

(i) $A \Delta(B\Delta C) = A \Delta ((B\cup C)  \ – \ (B \cap C)) = A \Delta ((B\cup C)  \ \cap \ (B \cap C)’)$

$= A \Delta ((B\cup C)  \ \cap \ (B’ \cup C’)) = A \cup ((B\cup C)  \ \cap \ (B’ \cup C’)) \ – \ A \cap ((B\cup C)  \ \cap \ (B’ \cup C’)) $

$= (A \cup B \cup C) \cap (A \cup B’ \cup C’) \cap (A \cap ((B\cup C)  \ \cap \ (B’ \cup C’))’$

$= (A \cup B \cup C) \cap (A \cup B’ \cup C’) \cap (A’ \cup (B’ \cap C’) \cup (B\cap C))$

$= (A \cup B \cup C) \cap (A \cup B’ \cup C’) \cap (((A’ \cup B’) \cap (A’ \cup C’))\cup (B \cap C))$

$= (A \cup B \cup C) \cap (A \cup B’ \cup C’) \cap ((A’ \cup B’) \cap (A’ \cup C’)\cup B) \cap ((A’ \cup B’) \cap (A’ \cup C’)\cup C)$

$= (A \cup B \cup C) \cap (A \cup B’ \cup C’) \cap (A’ \cup C’ \cup B) \cap (A’ \cup B’ \cup C)$

 

(ii) $(A \Delta B) \Delta C = ((A \cup B) \ – \ (A \cap B)) \Delta C =  ((A \cup B) \ \cap \ (A \cap B)’) \Delta C$

$=  (((A \cup B) \ \cap \ (A \cap B)’) \cup C) \ – \ (((A \cup B) \ \cap \ (A \cap B)’) \cap C)$

$= (A \cup B \cup C) \cap (A’ \cup B’ \cup C) \cap (C’ \cup (A \cup B)’ \cup (A’ \cup B’)’)$

$= (A \cup B \cup C) \cap (A’ \cup B’ \cup C) \cap (C’ \cup (A’ \cap B’) \cup (A \cup B))$

$= (A \cup B \cup C) \cap (A’ \cup B’ \cup C) \cap (C’ \cup B’ \cup A) \cap (C’ \cup A’ \cup B)$

Hence, Associativity satisfies. You can prove it using Venn diagram too.

$3)$ Identity:

Say $e \in 2^X$ is an identity element.

$A \Delta e = e \Delta A = A$ for $e \in 2^X$

$A \Delta e = A$ means $(A\cup e) \ –  \ (A \cap e) = A$

It is possible when $(A\cup e) = A$ and $ (A \cap e) = \phi$

$(A\cup e) = A$ is possible when $e=A$ or $e \subset A$ or $e = \phi$

But $e=A$ or $e \subset A$ then $(A \cap e) \neq \phi$ and so, identity element $e = \phi$  

$4)$ Inverse:

Say two elements $A,B \in 2^X$ and are inverse to each other.

$A\Delta B = B \Delta A = \phi$

So, $A\Delta B = \phi $ which means $(A \cup B) \  – \ (A \cap B) = \phi $

It is possible when $(A \cup B)  =  (A \cap B)$ because $(A \cup B)$ can’t be proper subset of $A\cap B$

And $(A \cup B)  =  (A \cap B)$ is possible when $A=B$

So, every element in $2^X$ is its own inverse.

Therefore (A), (D) 

 

One more way to prove associativity is by converting set theory operations to digital logic operations i.e. $\cup$ to $+$ and $\cap$ to $.$

So, $A \Delta B = (A \ – \ B) \cup (B \ – A) = (A \cap B’) \cup (B \cap A’ ) = AB’ + B A’  = A \oplus B$

So, symmetric difference operation in set theory is equivalent to exor operation in digital logic.

Now, $(A \oplus B) \oplus C = (AB’ + BA’) \oplus C = (AB’ + BA’)C’ + (AB’ + BA’)’C$

$= AB’C’ + BA’C’ + (A’+B)(B’+A)C = AB’C’ + BA’C’ + A'B’C + BAC$

$= A(BC + B'C’) + A’(BC’+B'C) = A (B \oplus C)’ + A' (B \oplus C) = = A \oplus (B \oplus C)$

4 votes
4 votes

For better understanding let start the question by taking set X = {1,2} and P(X) denotes the power set of X. So,

P(X) = { $\phi$, {1}, {2}, {1,2} }.

 

A binary operation $\Delta$ is defined on P(X) such that :

A $\Delta$ B = (A-B) $\cup$ (B-A)

Simply saying $\Delta$ is symmetric difference.

 

And, H = ({ $\phi$, {1}, {2}, {1,2} }, $\Delta$).

 


 

Let's take a look of on the closure property, Associativity, Identity & Inverse for H.

 

Closure Property : H is said to be satisfying closure property iff we take any two element from 

{ $\phi$, {1}, {2}, {1,2} } the result will always belongs to this itself.

Example : Let A = {1} and B = $\phi$

Then, (A-B) $\cup$ (B-A) = ({1}-$\phi$) $\cup$ ($\phi$ - {1}) = {1} $\cup$ $\phi$ = {1} $\epsilon$ P(X).

 

If we try to take any two elements from P(X) then we will observe that result will belongs to P(X).

So, H satisfies Closure Property.

 

Associativity :  (A $\Delta$ B) $\Delta$ C = A $\Delta$ (B $\Delta$ C).

Let's take A = {1}, B = $\phi$ & C = {2}

LHS : (A $\Delta$ B) $\Delta$ C

= {1} $\Delta$ C = {1} $\Delta$ {2} 

= ({1} -{2}) $\cup$ ({2}-{1}) = {1,2}

 

RHS : A $\Delta$ (B $\Delta$ C)

= A  $\Delta$ ( $\phi$ $\Delta$ {2}) = A $\Delta$ ( ($\phi$ - {2}) $\cup$ ({2} - $\phi$) )

= A $\Delta$ {2} = {1} $\Delta$ {2}

= {1,2}

Hence, LHS = RHS.

So, H satisfies Associativity.

 

Identity Property : An element 'e' is said to be identity element iff 

A $\Delta$ E = E $\Delta$ A = A.

 

It can easily be observed that for this binary operation $\Delta$, $\phi$ is the identity element. E = $\phi$

Let's have a look How?

A $\Delta$ E = (A - $\phi$) $\cup$ ($\phi$ - A) = A $\cup$ $\phi$ = A

E $\Delta$ A = ($\phi$ - A) $\cup$ (A - $\phi$) = $\phi$ $\cup$ A = A

Hence, E = $\phi$ is the identity element.

So, H have Identity Element.

 

Inverse : Let, $A^{-1}$ be the inverse of A. An element is said to be inverse if 

A $\Delta$ $A^{-1}$ = $A^{-1}$ $\Delta$ A = E

 

Let's 'T' be any element from P(X) and try to find out it's inverse

T $\Delta$ $T^{-1}$ = $\phi$

(T - $T^{-1}$) $\cup$ ($T^{-1}$ - T) = $\phi$

This equation will only holds good when $T^{-1}$ = T, means every element should be it's own inverse.

So, H have Inverse Element.

 

As, H satisfies Closure Property, Associativity, Indetity Element & Inverse. Then H is a group.

With this conclusion Option A is accepted and Option B is Rejected.

From conclusion on inverse property we can conclude that Option C is Rejected and

Option D is accepted.

 

So, correct comination of Answer : A, D.

Answer: