retagged by
910 views
13 votes
13 votes

Suppose that $A$ is a $3 \times 3$ real-symmetric matrix with eigenvalues $\lambda_1=1$, $\lambda_2=-1, \lambda_3=-2$, and corresponding eigenvectors $x_1, x_2, x_3.$

You are given that $x_1=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $x_2=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, what is $x_3 ?$

  1. $x_3  =\left(\begin{array}{c}
    1 \\
    0 \\
    -1
    \end{array}\right)$
  2. $
    x_3  =\left(\begin{array}{c}
    1 \\
    0 \\
    1
    \end{array}\right)$
  3. $
    x_3  =\left(\begin{array}{c}
    -1 \\
    0 \\
    1
    \end{array}\right)$
  4. $x_3 =\left(\begin{array}{c}
    0 \\
    0 \\
    0
    \end{array}\right)$
retagged by

2 Answers

12 votes
12 votes

We are given that $A$ is a $3$x$3$ real symmetric matrix with distinct Eigen values thus, corresponding to them we will obtain three non-zero Linearly Independent Eigen vectors. We are given two of those vectors.

Since option (D) is a zero vector and option (B) is a vector which is same as $x_{1}$ , both options can be eliminated.

Option (A) and (C) look promising since, they are Linearly Independent to both (A) and (C) but we are given that  $A$ is a real symmetric matrix. 

Eigenvectors corresponding to distinct Eigenvalues are orthogonal in symmetric matrix 

Therefore, we should check whether the vectors are orthogonal to each other. 

The value of the dot product of Eigen vectors corresponding to any pair of different eigen values of a symmetric positive definite matrix is zero.

For (A) i.e. $x_{3}$ $= \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$

$x_{3}^{T}$ $x_{1}$ $ = \begin{bmatrix} 1& 0&-1 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} \ =0$

$x_{3}^{T}$ $x_{2}$ $=  \begin{bmatrix} 1& 0&-1 \end{bmatrix}  \cdot \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}  =0$

Thus, Option (A) is correct.

 

For (C) i.e. $x_{3}$ $= \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}$

$x_{3}^{T}$ $x_{1}$ $= \begin{bmatrix} -1& 0&1 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} =0$

$x_{3}^{T}$ $x_{2}$ $= \begin{bmatrix} -1& 0&1 \end{bmatrix} \cdot \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}  =0$

Thus, Option (C) is correct.

 

A simple observation of the options would lead us to the same conclusion as well. Only (A) and (C) are rotating the transformation matrix $A$. 

edited by
3 votes
3 votes
Here each eigenvalues are different so they will give us independent eigenvectors.

Option A : x3 is independent from x1 and x2, so true.

Option B : x3 is clearly dependent on x1, false.

Option C : x3 is independent from x1 and x2, true.

Option D : Eigenvectors are by definition nonzero, hence false. (but eigen values can be zero or nonzero)
Answer:

Related questions

9 votes
9 votes
1 answer
3
GO Classes asked Apr 5, 2023
554 views
You have a matrix $A$ with the factorization:$$A=\underbrace{\left(\begin{array}{ccc}1 & & \\3 & 2 & \\1 & -1 & 2\end{array}\right)}_B \quad \underbrace{\left(\begin{arra...