If $P, Q, R$ are Boolean variables, then
$(P + \bar{Q}) (P.\bar{Q} + P.R) (\bar{P}.\bar{R} + \bar{Q})$ simplifies to
$P.\bar{Q}$
$P.\bar{R}$
$P.\bar{Q} + R$
$P.\bar{R} + Q$
For simplifying quickly, properties will play a $\color{RED}{key}$ role here. In boolean algebra, $+ \ and \ . $ is commutative, associative as well as distributive.
$(P+\bar{Q})(P\bar{Q}+PR)(\bar{P}\bar{R}+\bar{Q})$ $\Rightarrow (P\bar{P}\bar{R}+\bar{Q})(P.(\bar{Q}+R))$ $\Rightarrow \bar{Q}.P.(\bar{Q}+R)$ $\Rightarrow \bar{Q}.P$
Gatecse