Because it is symmetric, that means the unknown number will be on the right side of zero but of same magnitude.

Dark Mode

16,897 views

51 votes

Best answer

Answer is **A**

$P(X\leq -1)=P(Y\geq2)$

We can compare their values using standard normal distributions:

$$\begin{array}{c|c}

X& Y\\

\mu_X = +1 & \mu_Y = -1\\

{\large\sigma}_{X}{^2}=4&{\large\sigma}_{Y}{^2}=?\\

Z_{X}=\dfrac{X-1}{\sqrt{4}}&Z_{Y}=\dfrac{Y-(-1)}{{\large\sigma}_{Y}}\\

2Z_{X}+1=X&Y={\large\sigma}_{Y}Z_{Y}-1\\

\end{array}$$

$\implies P(2Z_{X}+1\leq -1)=P({\large\sigma}_{Y}Z_{Y}-1\geq 2)$

$\implies P(Z_{X}\leq -1)=P(Z_{Y}\geq \dfrac{3}{{\large\sigma}_{Y}})$

$\implies -(-1)=\dfrac{3}{{\large\sigma}_{Y}}$

$\implies {\large\sigma}_{Y}=3$

33 votes

First lets convert both $X$ and $Y$ to Standard normal distribution.

$Z=\dfrac{X-1}{2}$

$Z=\dfrac{Y+1}{\sigma}$

Now replace $X$ and $Y$ in $P(X\leq {-1})=P(Y\leq 2)$ we get $P(Z\leq {-1})=P\left(Z\geq \dfrac{3}{\sigma}\right)$

Since the Standard Normal Curve is symmetric about the mean( i.e, zero) $-(-1)=\dfrac{3}{\sigma}\Rightarrow \sigma = 3.$

Answer is Option A

$Z=\dfrac{X-1}{2}$

$Z=\dfrac{Y+1}{\sigma}$

Now replace $X$ and $Y$ in $P(X\leq {-1})=P(Y\leq 2)$ we get $P(Z\leq {-1})=P\left(Z\geq \dfrac{3}{\sigma}\right)$

Since the Standard Normal Curve is symmetric about the mean( i.e, zero) $-(-1)=\dfrac{3}{\sigma}\Rightarrow \sigma = 3.$

Answer is Option A