The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
+11 votes
745 views
What is the correct translation of the following statement into mathematical logic?

“Some real numbers are rational”

(A) $\exists x (real(x) \lor rational(x))$
(B) $\forall x (real(x) \to rational(x))$
(C) $\exists x (real(x) \wedge rational(x))$
(D) $\exists x (rational(x) \to real(x))$
asked in Mathematical Logic by Veteran (14.6k points)
edited by | 745 views

2 Answers

+25 votes
Best answer
Meaning of each choices:

(A): There exists a number which is either real or rational

(B): If a number is real it is rational

(C): There exists a number which is real and rational

(D): There exists a number such that if it is rational, it is real

So, (C) is the answer.
answered by Veteran (332k points)
selected by
@Arjun Sir: Can we write the statement as follows?
$\exists x( Real(x) \implies Rational(x) )$
 

In English: There exists an x such that, if x is real then it is rational.
@Pratyush, No that is incorrect because implication is also true when the antecedent is false.

Some numbers might not be real, and since here no domain is specified we consider domain of all numbers be it an integer or real etc.

So, when some number is not real, say it is integer, your first part of implication becomes false and hence the whole implication becomes true which should not happen.
+2 votes
(C) is the answer.

Translation of (C):" There exists a number which is real and rational " and this is eqt to “Some real numbers are rational”.
answered by Veteran (15.4k points)


Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

32,330 questions
39,146 answers
108,246 comments
36,501 users