edited by
1,638 views
11 votes
11 votes

Let $A$ be a matrix such that:

$A=\begin{pmatrix} -1 & 2\\ 0 & -1 \end{pmatrix}$

and $B=A+A^2+A^3+\ldots +A^{50}$. Then which of the following is true?

  1. $B^{2}=I$
  2. $B^{2}=0$
  3. $B^{2}=B$
  4. None of the above
edited by

3 Answers

Best answer
19 votes
19 votes
Answer B)

$B=\begin{pmatrix} {-1}&2 \\ 0&{-1}\end{pmatrix}+\begin{pmatrix}1&{-4} \\ 0&1\end{pmatrix}+\begin{pmatrix} {-1}&6\\ 0&{-1}\end{pmatrix}+\cdots$

$=\begin{pmatrix} 0&(2-4)+(6-8)\cdots \\ 0&0\end{pmatrix}$

$=\begin{pmatrix} 0&{-2-2-2}\cdots \\ 0&0\end{pmatrix}$

$=\begin{pmatrix} 0&{-2}\times 25 \\ 0&0\end{pmatrix}$

$=\begin{pmatrix} 0&{-50} \\ 0&0\end{pmatrix}$

 

$B^{2}=\begin{pmatrix} 0&{-50} \\ 0&0\end{pmatrix}\begin{pmatrix} 0&{-50} \\ 0&0\end{pmatrix}$

$=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}$
edited by
4 votes
4 votes

Given $A=\begin{bmatrix} -1 & 2\\ 0 & -1 \end{bmatrix}$

$A^2=\begin{bmatrix} 1 & -4\\ 0 & 1 \end{bmatrix}$ 

$A^3=\begin{bmatrix} -1 & 6\\ 0 & -1 \end{bmatrix}$

$A^4=\begin{bmatrix} 1 & -8\\ 0 & 1 \end{bmatrix}$

$A^5=\begin{bmatrix} -1 & 10\\ 0 & -1 \end{bmatrix}$

so we can generalize $A^k=$$\begin{bmatrix} (-1)^k & 2k.(-1)^{k+1}\\ 0 & (-1)^k \end{bmatrix}$

Given matrix A=$\begin{bmatrix} a_{11} &a_{12} \\ a_{21} & a_{22} \end{bmatrix}$

When we sum up $A+A^2+A^3+....A^{50}=B$ it is very clear that $b_{21}=0$ and since half of the matrix powers are odd and half are even, so when we add all of them together then $b_{11}=b_{22}=0$

Now, we need to compute the entry $b_{12}$

To compute it I take sum of all entries of $a_{12}$ in $A+A^3+A^5+...A^{49}$

So this will be like $2+6+10+....+98 = \frac{98+2}{2} *25 =1250$ and this will be positive in sign.

Now, I take the sum of all entries of $a_{12}$ in $A^2+A^4+....A^{50}$

and this is like $-4-8.....-100 = \frac{-104}{2} * 25=-1300$

So, $b_{12}$ entry would be $1250-1300=-50$

Hence our matrix B would be $\begin{bmatrix} 0 &-50\\ 0 & 0 \end{bmatrix}$

$B^2=0.$ option(B)

 

Note : To take sum of AP $a_1+a_2+a_3+...a_n= \frac{a_n(last\, term)+a_1 (first \, term)}{2}* \text{number  of  terms}$

edited by
0 votes
0 votes

Answer B) 0
Convert stipulated matrix to Identity (like) matrix. 

$R_{1} = R_{1} + 2 R_{2}$ 

A = $\begin{pmatrix} -1 & 0 \\ 0& -1 \end{pmatrix}$

Now every  even power of A will be positive I and every odd power will be negative I. 

So they will cancel each other out and answer will be 0.

If I missed something, let me know.

Related questions

6 votes
6 votes
3 answers
1
abhi18459 asked May 9, 2016
1,213 views
Find the number of positive integers n for which $n^{2}+96$ is a perfect square.
19 votes
19 votes
4 answers
2
abhi18459 asked May 8, 2016
1,752 views
A palindrome is a sequence of digits which reads the same backward or forward. For example, $7447$, $1001$ are palindromes, but $7455$, $1201$ are not palindromes. How ma...
3 votes
3 votes
4 answers
3
jjayantamahata asked Mar 30, 2018
1,511 views
If $a,b,c$ and $d$ satisfy the equations$a+7b+3c+5d =16$$8a+4b+6c+2d = -16$$2a+6b+4c+8d = 16$$5a+3b+7c+d= -16$Then $(a+d)(b+c)$ equals$-4$$0$$16$$-16$
0 votes
0 votes
1 answer
4