First time here? Checkout the FAQ!
+1 vote

Let $G$ be a connected graph. For a vertex $x$ of $G$ we denote by $G−x$ the graph formed by removing $x$ and all edges incident on $x$ from $G$. $G$ is said to be good if there are at least two distinct vertices $x, y$ in $G$ such that both $G − x$ and $G − y$ are connected.

  1. Show that for any subgraph $H$ of $G$, $H$ is good if and only if $G$ is good.
asked in Set Theory & Algebra by Veteran (92.5k points) 964 2325 3111 | 34 views

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Top Users Oct 2017
  1. Arjun

    23324 Points

  2. Bikram

    17048 Points

  3. Habibkhan

    7808 Points

  4. srestha

    6222 Points

  5. Debashish Deka

    5430 Points

  6. jothee

    4958 Points

  7. Sachin Mittal 1

    4772 Points

  8. joshi_nitish

    4286 Points

  9. sushmita

    3964 Points

  10. Rishi yadav

    3794 Points

Recent Badges

Notable Question makhdoom ghaya
Popular Question LavTheRawkstar
Avid Voter atul_21
Popular Question hem chandra joshi
100 Club nikhil_cs
Notable Question Sukannya
Notable Question Sourabh Kumar
Notable Question shikharV
Nice Comment Sachin Mittal 1
Popular Question ManojK
27,287 questions
35,134 answers
33,223 users