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Abstract

The two phase commit (2PC) protocol is used to

guarantee the serializability of distributed transac-

tions. The message cost of the standard 2PC has led

to e�orts to optimize the protocol and reduce the num-

ber of messages required. The common optimizations

require that each cohort of a transaction be terminated

(�nished with normal accessing of data) in order for

these optimizations to lead to serial schedules. This

paper suggests using timestamps as a substitute for

knowing when cohorts are terminated, and shows how

the 2PC protocol itself can be used to choose the times-

tamps. The key to this is to permit cohorts to vote

transaction time ranges within which the transaction

must commit or else be aborted. Using time ranges,

the read only optimization and early release of read

locks can be supported. The transaction times chosen

are appropriate for identifying versions of data in a

multiversion rollback database.

1 Introduction

1.1 Two Phase Commit

Two phase commit [2, 6] is a protocol that is used

to ensure the serializability of distributed transactions.

This protocol has two phases, as indicated in its name.

The end of a transaction's active phase, where it is

executing \normally", is signalled by a PREPARE

message, while the transaction's �nal disposition is in-

dicated by a COMMIT or ABORT message, usually

after the transaction has \prepared". Each of these

messages is routinely acknowledged. Hence, the usual

message cost of two phase commit(2PC) is four mes-

sages per transaction participant (cohort).

Optimizations to the 2PC protocol have been de-

signed to reduce the above message cost. Most op-

timizations [9] rely on the assumption that all non-

commit related processing in all cohorts of a transac-

tion has terminated prior to the commit protocol be-

ginning. In particular, no activity requiring the lock-

ing of additional data is continuing. Ensuring termi-

nation is what causes a major part of the complexity of

commit protocol implementations. In the absence of

ensured termination, these optimizations do not guar-

antee serializability.

1.2 Cohort Termination

1.2.1 The Problem

Termination is straightforward to guarantee when

all processing follows the request/response paradigm.

The coordinator only initiates the 2PC protocol when

all responses have been received. However, not all sys-

tems follow this paradigm. And for those that don't,

ensuring that locking has terminated can require extra

messages. Without some further e�ort, termination is

only known to cohorts when they receive the COM-

MIT/ABORT message.

No optimization that releases locks prior to termi-

nation, e.g., at prepare time, can be permitted because

serialization cannot be guaranteed. This precludes the

read-only optimization, where a cohort votes \Read

Only' at phase one of the protocol and does not partic-

ipate at phase two. Such a cohort never �nds out when

all cohorts of a transaction are guaranteed to have ter-

minated. Releasing its locks risks non-serializability.

Below is an example where the early release of READ

locks during the commit protocol violates two phase

locking, and hence compromises serializability.

Example:

Cohort C1 of a transaction releases read locks when the

2PC PREPARE message arrives. Cohort C2 receives

the PREPARE message somewhat later, and contin-

ues to acquire locks during this period. Hence the lock-

ing for the entire transaction is not two phased, even

though it is two phased at each cohort. A second trans-

action may be able to change C1's released data, hence

serializing after C1, and also change data prior to C2

examining it, hence serializing before C2. Thus, the

global transactions are not serializable.

1.2.2 Some Examples of the Problem

Most commercial transaction management proto-

cols support non-request/response functionality, e.g.

IBM's LU6.2 and Digital's DECdtm

1

. They do this

because the request/response paradigm is too restric-

tive in several important cases. We describe two ex-

amples below.

Constraint Evaluation: Even assuming that a

database system normally uses request/response

for database operations, e.g. requesting data from

remote systems, there is a performance advantage

to not requiring separate requests to trigger de-

layed constraint evaluation. These requests might

well have to reach all cohorts, exactly like the

PREPARE message itself. It is more e�cient to

1
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use the PREPARE message to trigger the con-

straint execution. But now the transaction may

not be terminated when the commit protocol is

initiated. New read locking may well be required

to evaluate the constraint.

Data Streams: Request/response is cumbersome

if one's intent is to initiate data streams owing

between transaction cohorts, say to perform dis-

tributed joins in a pipelined fashion. It is also

the case that a user may not want to complete

all requests that are streaming him answers be-

fore wrapping up the transaction and commit-

ting. That is, he may have done some updating,

looked at some partial answers, and then want to

commit the transaction. But interrupting such

stream processing early is not an instance of re-

quest/response. Here again, a transaction is be-

ing terminated while work is going on.

In both the cases above, transaction termination

can only be ensured prior to commit protocol initia-

tion if an additional round of messages were to travel

to all possibly active cohorts. This would turn 2PC

into 3PC, where the �rst phase is performed to en-

sure termination. This surely obviates most of the

bene�t from these optimizations. Our timestamping

approach permits the interesting optimizations with-

out requiring ensured termination, and hence without

needing an additional phase.

1.2.3 Coping Using Timestamps

Our purpose here is to demonstrate how timestamps

that correctly serialize transaction can overcome the

di�culties introduced by the uncertainty of cohort ter-

mination. In particular, we extend the two phase

commit protocol to provide a more general agreement

protocol. Not only is it used to agree on and prop-

agate the commit/abort state of the transaction. It

is also used to agree on the transaction time. This is

done without extra message overhead, as suggested in

[4, 11].

We suggest here that cohorts vote on the transac-

tion time using bounded time ranges. It is the bound

on the range of time during which a transaction must

commit, and the timestamp order that is enforced by

the protocol, that compensate for the lack of informa-

tion concerning the termination of cohorts. A cohort

can be sure that all other cohorts to a transaction have

terminated after the time given for the transaction.

Hence, after the transaction time, no further locking

is going on at any cohort, and locks at all cohorts can

be released. This transaction time can, when time

ranges are voted, be bounded, permitting locks to be

freed without the need to receive the commitmessage.

1.3 Organization of the Paper

We show how timestamps or timestamp ranges can

be decided upon and voted by each cohort and how

timestamps can be agreed upon and propagated us-

ing the two phase commit protocol in section 2. This

permits us to exploit commit protocol optimizations

which ensure that distributed transactions are cor-

rectly serialized even when their locks are not strict

two phased. This is discussed in section 3. Section 4

discusses how to interoperate in a heterogeneous sys-

tem where not all database systems perform times-

tamp voting. Section 5 reviews the impact of times-

tamps on the two phase commit protocol and discusses

the further uses of our timestamping two phase com-

mit in multiversion databases.

2 Agreeing on Transaction Time

2.1 The Two Phase Commit Protocol

We begin with an informal description of the two

phase commit (2PC) protocol for coordinating dis-

tributed transaction. It has the following steps:

1. A coordinator noti�es all transaction cohorts that

the transaction is to be terminated, via the PRE-

PARE message (message one of the protocol).

2. Each cohort then sends a VOTE message (mes-

sage two) on the disposition of the transaction.

The vote is either COMMIT or ABORT. A cohort

that has voted COMMIT is now PREPAREd.

3. The coordinator commits the transaction if all

cohorts have voted COMMIT. If any cohort has

voted ABORT, or the coordinator times out wait-

ing for a cohort's vote, then the coordinator

aborts the transaction. The coordinator sends the

disposition message (i.e. COMMIT or ABORT)

(message three) to all cohorts.

4. The cohort terminates the transaction accord-

ing to its disposition, either COMMIT'd or

ABORT'd. The cohort then ACKs(message four)

the disposition message.

There are a number of multi-phase commit proto-

cols. And the 2PC protocol itself has a number of

optimizations to reduce messages. Any protocol in

which each cohort sends a message to a coordinator

and where the coordinator informs all cohorts of trans-

action disposition can be used to agree upon a transac-

tion time. The methods below should work with many

distributed commit protocols, including, e.g., nested

commit (linear) 2PC. We discuss the impact of cer-

tain protocol optimizations in section 3 and describe

extensions that work with these.

2.2 Voting for Transaction Time

2.2.1 The Basic Protocol

To select a transaction time, we extend the 2PC pro-

tocol by augmenting the information conveyed on two

of its messages. When a cohort votes to COMMIT a

transaction at message number two, it also conveys its

requirements with respect to the choice of a transac-

tion time. The coordinator examines all the require-

ments and tries to �nd a transaction time that satis�es

all of them. If successful, it propagates, on message

number three, to all of the cohorts, both the disposi-

tion of the transaction and, if the disposition is COM-

MIT, the transaction time chosen.



2.2.2 Cohort Time Selection

A cohort must determine, when it receives the noti�-

cation to begin the commit process (i.e. message num-

ber one from the coordinator), a time that is later than

the time for any preceding transaction with which it

may conict. A transaction conicts with a preceding

transaction if, for example, it reads data written by

the preceding transaction or writes data read by the

preceding transaction. In this case, the transaction

serializes after the preceding transaction. Our proto-

col is designed to ensure that timestamp order agrees

with transaction serialization order. Enforcing that

transaction time be later than the time of preceding

conicting transactions guarantees that timestamp or-

der and serialization order agree.

We assume in the following that each site has a

local clock that is loosely synchronized with a global

time source that reects real world time, e.g. Green-

wich Mean Time. Our intent is to assign times to

transactions that reect users' perceptions of when the

transactions actually occurred. We combine these lo-

cal clocks with an adaptation of Lamport clocks [5]

to ensure that transaction times are monotonically in-

creasing.

A site (database system at the site) that exe-

cutes the following procedure will generate a time

for a transaction at the site that is later than the

transaction times of all previously committed trans-

actions with which the committing transaction con-

icts. (Note: All notation used in equations here and

subsequently are de�ned in Table 1.)

1. A database system maintains a monotonically in-

creasing LAST

i

transaction time at each site i.

It does this by comparing LAST

i

with the times-

tamps that it receives for each committed trans-

action in message three of the commit protocol.

Whenever one of these timestamps is later than

LAST

i

, LAST

i

is set to the value of this new

timestamp. This is the Lamport clock compo-

nent. LAST

i

is also advanced whenever a local

transaction chooses a transaction timestamp and

commits. Thus, LAST

i

(X), the value of LAST

i

at the time transaction X commits, is an upper

bound on the timestamps of earlier conicting

transactions.

A more aggressive alternative is to save LAST

i

as

LAST

i

(X) whenever X acquires a lock. The �nal

LAST

i

so saved is surely later than all conict-

ing earlier transactions when locks are held until

commit time. (Note: we cannot choose an ear-

lier time than this without knowing the transac-

tion times of transactions that have read the data

that this transaction writes. But this risks turn-

ing data reads into writes so that we can record

this information. See section 3.5 below for an-

other approach to this.)

Thus our initial de�nition of CONFLICT

i

(X),

a time guaranteed to be later than the time of all

earlier conicting transactions, is

CONFLICT

i

(X) = �+ LAST

i

(X)

2. A database system that acts as a transaction

cohort expresses its transaction time require-

ment as the EARLIEST time at which the

transaction can be permitted to commit. This

must be later than both the time of any pre-

ceding conicting transaction in that database.

So, when the database receives the PREPARE

message from the coordinator and it wants to

vote to COMMIT, it votes (at message two) an

EARLIEST transaction time that is no earlier

than CONFLICT

i

(X). Further, a transaction's

commit time should come no earlier than its start

time, START (X), to keep the transaction time

synchronized with user expectations. Thus, co-

hort i votes a time for transaction X of

EARLIEST

i

(X) = max(CONFLICT

i

(X); START (X))

3. The coordinator picks a transaction time that

is not earlier than the latest EARLIEST time

voted by any cohort. In fact, it is desirable

to choose exactly the lastest EARLIEST time

voted. This transaction time has the advantage

of being the time that satis�es the constraints and

that also is the earliest such time. This minimizes

the value of transaction time and hence the val-

ues at each database of the variable LAST . Its

e�ect is to keep transaction time closer to the

clock time seen at each site. The chosen transac-

tion time is distributed to the transaction cohorts

on the transaction disposition message (message

three) of the 2PC protocol. Thus, the coordinator

chooses a time for transaction X of

TIME(X) = max(fEARLIEST

i

(X) j COHORT

i

(X)g)

2.2.3 Timestamp and Serialization Order

We call the time between a cohort's EARLIEST vote

and the commit time of the transaction the PRE-

PAREd INTERVAL. The result of item 2 above is

that conicting transactions at a site will have dis-

joint PREPAREd INTERVALs when strict two phase

locking is used by the cohort database system. Strict

two phase locking requires that all locks be held until

commit. Hence, a following transaction is prevented

from preparing until the earlier conicting transac-

tions are committed and release their locks. Disjoint

PREPAREd INTERVALs thus guarantee that a fol-

lowing transaction will have a timestamp that is later

than all conicting transactions that precede it in the

serialization order at a site.

CONFLICT

i

(X) is later than the time of any pre-

viously committed conicting transaction. A follow-

ing transaction at a site will thus vote an EARLIEST

time that is later than earlier conicting transactions.

The agreed upon time will thus be later than all con-

icting transactions at all sites. This ensures that se-

rialization order and timestamp order agree at each

cohort. Since serialization order and timestamp order

agree locally at each cohort, using a common times-

tamp ensures that these orders will agree globally for

all transactions, local and distributed.



2.3 Timestamp Ranges

2.3.1 Divergent Clock Time

A di�culty for our timestamping 2PC extension is

that a database cohort with a substantially faster

clock can seriously disrupt the entire distributed sys-

tem and the transaction times that are chosen. A late

EARLIEST vote will always become the transaction

time. This forces transaction time ahead of clock time

at cohorts whose clocks are running correctly. This is

bad because if a cohort commits work at 4:00PM, a

user at that location does not expect the transaction

to have a timestamp of 10:00PM that evening. The

user expects a time which is within no worse than a

few minutes, and perhaps only a few seconds of the

EARLIEST time supplied by the cohort.

Since it is required that transaction timestamp or-

der agree with transaction serialization order, how

does one limit the divergence between clock time and

transaction time? The answer is that transactions

with EARLIEST votes too far apart can be aborted.

The tricky part here is what constitutes \too far

apart". This is similar to what constitutes reasonable

\timeouts" for messages or locks. Below we suggest a

mechanism of dealing with this.

2.3.2 Voting With Timestamp Ranges

One way to establish bounds that limit the diver-

gence of EARLIEST votes is to have the cohorts

also vote a LATEST acceptable time for the transac-

tion. The LATEST time is not required for serializ-

ability, but is designed to limit clock and transaction

time divergence. The transaction coordinator is re-

quired to �nd a transaction time that is within all the

[EARLIEST; LATEST ] time ranges voted by each

cohort. If the intersection of these ranges is null, the

coordinator ABORTs the transaction. A coordinator

thus chooses transaction time to be

TIME(X) =

min(\f[EARLIEST

i

(X);LATEST

i

(X)] j COHORT

i

(X)g)

Notice that this agrees with our prior time choice

when one interprets the absence of a LATEST choice

as a vote for a LATEST of in�nity.

It is desirable, of course, to correct a divergent clock

because it may be the cause of frequent transaction

aborts. It is possible to use the ABORT message

itself to inform cohorts of the reason for the abort.

In particular, an ABORT message informing cohorts

that divergent times caused the abort could prompt

cohorts to re-synchronize their local clocks with the

global time standard.

A heavily used database may well place more strin-

gent requirements, i.e. vote a smaller range, than a

lightly used database. It may need the tight bounds to

increase concurrency by reducing the amount of time

during which transactions are in doubt. A database

on a workstation might be willing to accept almost any

timestamp that a host database might agree to during

a distributed transaction, so long as transaction time

order and transaction serialization order agree. Such

a database might not vote a LATEST bound.

3 Optimizations of the 2PC Protocol

3.1 The Read-Only Optimization

When transaction termination is guaranteed prior

to the initiation of the 2PC protocol, a read-only co-

hort, i.e., one that has no updates, does not need to re-

ceive the COMMIT message as it has no activity that

it needs to perform as a result. It merely releases its

locks when it receives the PREPARE message. With

timestamps, we cannot permit read locks to simply be

released at PREPARE time. A subsequent conicting

transaction may access this data and commit with an

earlier timestamp, hence making timestamp order dif-

ferent from any valid transaction serialization order.

We must be sure that subsequent transactions that

write \unlocked" data are given timestamps later than

the transaction that released the locks. Hence, we

would perhaps prefer to release these locks only after

the time of transaction commit. The problem is how

to preserve the read-only optimization when the co-

hort will never be told, via a COMMIT message, the

timestamp of the transaction.

It should be immediate that a read-only cohort,

sending its COMMIT vote with a closed timestamp

range of [EARLIEST; LATEST ], solves this prob-

lem. This read-only cohort now knows that the trans-

action will terminate no later than the time it provided

in LATEST . Hence, it can free its locks at LATEST

time, without ever knowing, via the COMMIT mes-

sage, the precise time that the transaction terminated.

The LATEST vote ensures that the PREPAREd IN-

TERVALs of conicting transactions are disjoint, even

without knowing the actual commit time of the trans-

actions. And this ensures that timestamp order agrees

with serialization order.

3.2 In-Doubt Transaction Read Data

The classic problemwith the 2PC protocol is that it

is subject to being \blocked" in the case of system fail-

ures. In fact, there is no commit protocol that resists

blocking in all failure cases. A blocked transaction's

data may be unavailable for extended periods of time.

Data unavailability is ameliorated by the fact that

data that is only read by a transaction can be un-

locked at PREPARE time, when timestamping is not

involved and transaction termination is guaranteed

prior to initiation of the commit protocol. Again,

the constraint that timestamping requires, i.e. that

two conicting transactions not be simultaneously pre-

pared, limits our response to blocked transactions.

That is, we must ensure that subsequent transactions

that commit after this prepared transaction have later

timestamps. But, having done this, we can then ex-

ploit this optimization, even when transactions have

not terminated prior to commit protocol initiation.

With cohorts voting a timestamp range, i.e.

[EARLIEST; LATEST ], a database can restore its

ability to release read locks for a blocked transaction.

That is, as with a read-only cohort, it knows that

the transaction must terminate no later than the time

voted as LATEST . Hence, even in-doubt transactions

can release their read locks then. This does not save

us from the necessity of retaining the write locks of

the transaction, as we still do not know whether to



install the after state of the transaction, or re-install

its before state. It is the write locks that keep this

part of the state inaccessible.

3.3 Releasing Read Locks at PREPARE

Without timestamping requirements, any cohort

can release READ locks at PREPARE time, when

there is no further locking activity in the transac-

tion. This reduces lock holding time, thus increasing

concurrency. As before, with timestamping, this can-

not be done in this direct way. The problem is not

solved solely by providing a LATEST time at which

the transaction must terminate. The whole point of

releasing read locks at PREPARE time is to make the

data so locked available to other transactions before

the transaction commits. We do not want to hold

locks until clock time exceeds LATEST .

The important constraint is not one of preventing

other transactions from using the read-locked data af-

ter its transaction has PREPAREd. This is harmless,

as attested by the fact that, in the absence of times-

tamping considerations, one could freely access this

data. Rather, what is required is that a transaction

that modi�es this data be required to commit with a

transaction time that is later than the commit time of

this prior prepared transaction. The general problem

here is to keep PREPAREd INTERVALs disjoint for

conicting transactions so that PREPAREd order be-

comes COMMIT'd order and timestamp order as well.

Hence, this problem is one of ensuring that a sub-

sequent conicting transaction votes an EARLIEST

time that is later than the LATEST time that is voted

by the current transaction.

One approach is to force LAST to immediately be

set to the LATEST time voted. This is unlikely to

be satisfactory, however. It increases the divergence

between clock time and transaction time, which may

lead to unnecessary transaction abort or to user sur-

prise concerning transaction time.

3.4 Delaying Conicting Transactions

3.4.1 DELAY Locks

What we would like to provide is a way of making

read-only data available to subsequent transactions at

PREPAREd time but delay any transaction that uses

the data so that it will have a transaction time that

is later than the PREPAREd transaction that \re-

leased" the data. This can be be done with a new lock

called a DELAY lock. At PREPARE time, a transac-

tion transforms all its read locks to DELAY locks. At

commit time, the DELAY locks are dropped. A DE-

LAY lock does not conict with any other lock mode.

However, if a transaction write-locks data that is DE-

LAY locked, it is not permitted to commit until after

the DELAY lock is dropped. This ensures that the

timestamp order of transactions agrees with their se-

rialization order.

Another way to make use of DELAY locks is to

again remember that their purpose is to force trans-

action time ordering to agree with serialization order,

and it is these timestamps that we are trying to con-

trol. This suggests that rather than delaying commit

processing, i.e. the 2PC protocol, we instead use the

DELAY locks encountered by a transaction to control

what a transaction votes as its EARLIEST bound

for transaction time.

The idea is to associate a time with DELAY locks.

This time is examined should DELAY locks still be

held on data that has been modi�ed by a subsequent

transaction, at the time that the subsequent transac-

tion initiates its commit processing. The latest time

on any of the DELAY locks that it saw (not the delay

locks that it may set) helps in establishing the lower

bound on its permitted transaction time. To be sure a

transaction gets a timestamp later than all conicting

transactions, we rede�ne CONFLICT

i

(X) as

CONFLICT

i

(X) = �+

max(fLAST

i

(X)g[ fLATEST

i

(Y ) j DELAY S

i

(Y;X)g)

This de�nition of CONFLICT

i

(X) ensures that con-

icting transactions continue to have disjoint PRE-

PAREd INTERVALs, and hence that timestamp order

and serialization order agree.

3.4.2 Implementing DELAY Locks

A low cost way to implement DELAY locks does not

involve any explicit downgrading of locks in the lock

manager and hence no extra call to the lock manager.

Rather, a transaction's read locks needn't be changed

and can be explicitly released only at transaction com-

mit. A subsequent transaction that encounters a read

lock (and that wishes to write the data so locked) con-

sults the transaction table to determine the disposition

of the transaction.

If a transaction holding a READ lock is PRE-

PAREd, the READ lock is treated as a DELAY lock,

and a requested WRITE lock is granted. The trans-

action holding the DELAY lock is entered on the DE-

LAYing transaction list for the requesting transaction.

The requesting transaction does not block, and hence

a process switch is avoided.

If the transaction holding the READ lock is AC-

TIVE (not PREPAREd), then a write request is

treated as a read-write conict in which the request-

ing transaction must block. The transaction holding

the READ lock is entered on the DELAYing transac-

tion list for the requesting transaction in anticipation

of the downgrading of these locks.

When a transaction PREPAREs, it demotes its

READ locks to DELAY locks. This is accomplished

by unblocking all transactions that had requested

WRITE locks on its READ locked data while it was

ACTIVE. These blocked WRITE-requesting transac-

tions need to be identi�ed so that they can be per-

mitted to proceed. This is the only burden placed on

the holders of DELAY locks. Transactions without

blocked writers do not pay this cost.

When the WRITE-requesting transaction PRE-

PAREs, its time range vote must be cast. The DE-

LAYing list is scanned. Completed (COMMIT'd or

ABORT'd) transactions on the DELAYing list are ig-

nored. If all transactions are completed, then the time

range vote is una�ected by DELAY locks. Otherwise,

the latest LATEST vote of all the still PREPAREd

transactions on the DELAYing list becomes the lower

bound on the EARLIEST vote for this transaction.



3.5 Timestamped Locks

An earlier EARLIEST vote increases the size of

the timestamp range that can be voted, hence increas-

ing the probability that a transaction can be commit-

ted, without increasing the time of the LATEST vote.

The preceding has shown how timestamps can be used

to realize delay locks by permitting early release of re-

sources while delaying the timestamp of subsequent

conicting transactions. We can exploit timestamps

on locks to also permit transactions to vote an earlier

EARLIEST time.

Normally, the lock manager purges locks held by

committed transactions when they commit. This

means that the system no longer knows the last time at

which data has been read by committed transactions.

However, when we convert read locks to DELAY locks

instead of releasing them completely, we retain that

information. DELAY locks have been released when

their holding transactions committed. But to permit

read-write conict detection, we can choose to con-

tinue to hold DELAY locks for a more extensive pe-

riod. Thus, the system would know the timestamps

of recently read data and subsequent writers would be

able to de�ne CONFLICT

i

(X) more precisely.

What the above entails is to include in the de�ni-

tion of CONFLICT

i

(X) explicit information about

the set of recent conicting transactions, i.e. those

that must serialize BEFORE the committing trans-

action. When pursuing this course, write locks can

also be timestamped when a transaction commits, per-

mitting us to detect write-write and write-read con-

icts as well as read-write conicts. Instead of purg-

ing locks when a transaction commits, we continue to

maintain them in the lock manager for some speci�ed

time period �, perhaps some modest number of sec-

onds, as if they were DELAY locks. (We can deal with

write-read and write-write conicts in a timestamping

multiversion database (see section 5.2) by timestamp-

ing the changed data.)

When a subsequent transaction X requests a lock

that conicts with one of these timestamped locks,

the new lock is granted, but, similar to DELAY locks,

the transaction holding the lock is recorded in asso-

ciation with the requesting transaction and the re-

questing transaction is required to commit after this

earlier conicting transaction. Since only transac-

tions conicting in the last � seconds are included in

BEFORE

i

(Y;X;�), one cannot be sure of conicts

more than � seconds ago. Thus

CONFLICT

i

(X) = �+

max(fTIME(Y ) j BEFORE

i

(Y;X;�)g

[fLATEST

i

(Y ) j DELAY S

i

(Y;X)g

[fmin(CLOCK

i

(X)� �; LAST

i

(X))g)

This last de�nition of CONFLICT

i

(X) is the

most precise information we have on the time of

the latest conicting transaction, and can be used

instead of earlier de�nitions when determining the

EARLIEST

i

(X) vote.

4 Votes Without Timestamps

4.1 Heterogeneous Systems Problem

We would like our commit protocol to work

correctly in a heterogeneous system where trans-

actions may involve both timestamping and non-

timestamping database cohorts. If a cohort does not

include a timestamp on its voting message, then a

problem arises. Even though transactions are seri-

alized correctly at each database, and a valid global

serialization for all databases is ensured, the times-

tamp order cannot be guaranteed to agree with a valid

global serialization.

Example:

Transaction T1 executes at timestamping database A

and non-timestamping database B. Transaction T2 ex-

ecutes at non-timestamping database B and at times-

tamping database C. Let transaction T1 commit at B

prior to T2. However, the EARLIEST time voted for

T1 at A can be later than the EARLIEST time for T2

at C since there are no constraints established at B.

Hence, the timestamps for T1 and T2 do not neces-

sarily agree with a valid serialization of T1 and T2,

which must order T1 before T2.

4.2 The Role of the Transaction Manager

Distributed transaction processing systems have

a system component called the transaction man-

ager(TM) [3]. The TM exists at every site in the sys-

tem and assists the database systems at each site to

coordinate distributed transactions. It does this by

presenting a strictly local interface to each database

system through which the two phase commit protocol

is exercised. The TM performs the communication re-

quired in the commit protocol. That is, any commit

protocol message has a source that is a TM at one site,

and a destination that is a TM at another site.

A site's TM interfaces with all databases at the site,

whether timestamping or non-timestamping. The TM

coordinates the transaction, at the direction of one of

its local databases or application programs. Since the

TM exists at every site, any site can be a transaction

coordinator, whether or not a timestamping database

is present. Each database system noti�es its local TM

about commit initiation and voting. The coordina-

tor TM examines votes, decides whether to commit or

abort a transaction, and selects the transaction time.

It then communicates to other remote participating

TMs the transaction disposition and time. These TMs

inform their local participating databases.

4.3 Transaction Manager Voting

The solution to the problem of non-timestamping

databases in a transaction is for the TM to pro-

vide a timestamp should a database not vote an

EARLIEST time. The TM executes the procedure

in section 2.2.2 to choose an EARLIEST timestamp.

It keeps the LAST variable for each database system

with which it deals at the site.

Note that a TM interacting with a database on its

site can also supply the LATEST , i.e. high bound,

for the transaction time vote should the database itself

not provide it. This is similar to the TM role when



dealing with a non-timestamping database. But now,

the TM can supply either EARLIEST , LATEST , or

both bounds. These alternatives are all potentially

useful.

With a TM, a database system need not know any-

thing about timestamps. And the TM need know

very little about the database. The TM executes

the timestamp selection protocol in the absence of an

EARLIEST vote. The TM can execute only the �rst

alternative of 2.2.2 to determine CONFLICT

i

(X).

A timestamping database system might be able to do

better (see, e.g., section 3.5). We assume that the TM

does not have access to the more detailed information

needed for this.

What enables timestamp ranges to ensure trans-

action serialization is that each database enforces dis-

joint PREPAREd INTERVALs for conicting transac-

tions. Database usually do this via strict two phased

locking but it might employ DELAY locks or times-

tamped locks in its role of enforcing disjoint PRE-

PAREd INTERVALs. If a database communicating

with a TM is known to guarantee this, then not only

is serializability ensured, but all of the previous opti-

mizations of the timestamping databases are possible.

4.4 Disjoint PREPAREd INTERVALs

The TMmay not be able to depend on all databases

ensuring disjoint PREPAREd INTERVALs. For ex-

ample, if a non-timestamping database releases read

locks at PREPARE time, and does not use DELAY

locks, then conicting transactions might be simul-

taneously PREPAREd. This does not compromise

serializability, assuming that all locking is completed

prior to the commit protocol initiation. However, it

can cause the timestamp order to di�er from a valid

serialization.

If the TM has no information about a local

database's behavior in this regard, then the TM it-

self must ensure disjoint PREPAREd INTERVALs for

conicting transactions. One idea is to prevent ANY

transactions, not merely conicting ones, from be-

ing simultaneously PREPAREd, which is clearly suf-

�cient. The TM can realize this very simply by re-

quiring one transaction from the database to commit

before the next transaction is prepared.

A variation of this approach enforces this constraint

by exploiting timestamp ranges. The TM can en-

sure that conicting transactions have disjoint PRE-

PAREd INTERVALs by using a conservative de�ni-

tion of CONFLICT

i

(X) which exploits the knowl-

edge that it has about the LATEST votes of ALL

prepared transactions. Thus

CONFLICT

i

(X) = �+

max(fLAST

i

(X)g [ fLATEST

i

(Y ) j PREPAREd

i

(Y;X)g)

4.5 Preventing Early Lock Release

The above demonstrates that an appropriately de-

signed \timestamping" TM can cope with database

systems that expect to use ordinary 2PC and to re-

lease READ locks at prepare time. However, the de-

signs can seriously impact performance. The problem

is that transactions are essentially \single-threaded"

through the PREPAREd state. A heavily used

database system will experience this as a bottleneck

to high performance. For such database systems, the

best way of limiting the enforcement of disjoint PRE-

PAREd INTERVALs to conicting transactions may

well be to retain all locks until commit and to give up

the early lock release optimizations.

If we know that a database system uses two phase

locking, with no release of locks prior to PREPARE,

the TM may be able to prevent the database system

from releasing locks until commit time. If the database

system waits for an ACK to its PREPARE vote before

releasing locks at PREPARE time, then the TM can

delay the ACK for message two until commit time.

The two phase locking then becomes strict two phase

locking when combined with the delayed ACK. This

guarantees that PREPAREd INTERVALs of conict-

ing transactions are disjoint.

4.6 Registering with the TM

There are substantial di�erences in performance for

each of the above database types in their interaction

with the TM. This suggests that a TM be designed

to recognize the database type and so provide it with

the best possible performance permitted for the type.

Typically, databases register with the TM at a site so

as to make known their 2PC protocol entry points to

the TM. This registration process could also serve to

identify to the TM the type of database.

We expect database systems to have only a tran-

sitional period in which they use the single threaded

commit protocol. Competitive pressure should force

their evolution to higher performance.

5 Discussion

5.1 Timestamping Two Phase Commit

A database system may not want cohorts termi-

nated prior to 2PC protocol initiation. For example,

a database can use the PREPARE message to invoke

\delayed" constraint evaluation or delayed triggers.

Our timestamping 2PC protocol permits this while

still ensuring serializability of transactions. Further,

it can exploit common 2PC optimizations that nor-

mally can be used only when termination is guaran-

teed. This o�ers high concurrency with the e�ciency

of using the commit protocol to \quiesce" transaction

cohorts. With an appropriate transaction manager,

our protocol works in a heterogeneous system contain-

ing non-timestamping cohorts

Choosing sizes for timestamp ranges voted by co-

horts requires making trade-o�s between concurrency

and the frequency of aborts. The larger the range, the

more likely that transactions commit, but the less con-

currency. This is not unlike other choices for timeouts,

e.g. for deadlocks or in network communication pro-

tocols. The substantial payo� for voting timestamp

ranges is the elimination of termination messages and

the potential for early release of locks.

5.2 Multiversion Databases

5.2.1 Transaction Time Databases

Transaction time databases [8] use transaction time to

stamp each version of data in a multiversion database.



The order of the timestamps must be a correct serial-

ization of the transactions. Time-slice queries retrieve

data a transaction consistent view of the database as of

some past time. Data that is current may continue to

be updated, and hence is best stored on a medium that

can be multiply written, e.g. magnetic disk. However,

\historical" data is never updated, and hence could

be stored on write-once, read many (WORM) opti-

cal disks [10, 7]. Inexpensive WORM optical disks

change dramatically the functionality/cost trade-o�

and may make transaction time databases useful for a

large number of applications.

5.2.2 Providing Transaction Timestamps

Timestamping methods impose serialization when the

timestamp is chosen [1]. Competing requests from

transactions with timestamps ordered di�erently from

request order require that one of the transactions be

aborted. When a timestamp is chosen at transaction

start, it is known to all cohorts during updating, and

can be used to stamp the data then. However, dealing

with read-write conicts can require that data items

carry the timestamp of the last reader, changing reads

into writes.

Two phase locking remains the concurrency method

of choice. Locking has understood and acceptable

performance. Locks delay conicting requests with-

out reference to timestamps. Locking permits us to

choose timestamps at commit time that correctly re-

ect the serialization that transactions actually expe-

rienced. The timestamping 2PC protocol facilitates

this by avoiding extra messages for time agreement.

With transaction time unknown until commit, it is

impossible to post timestamps during updates. What

is needed is either a second visit to the updated data,

or a persistent way of associating transaction time

with a transaction identi�er stored with the data.

Combinations of these strategies are also possible so as

to enable lazy posting of the timestamps (see [10, 8]).
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Table 1: De�nitions of Terms

Terms De�nitions

Symbols

X, Y distributed transactions

i site of a distributed system

T current time

Time Terms

CLOCK

i

(X) T at i when X prepares

EARLIEST

i

(X) earliest time acceptable to i for X

LAST

i

time of last committed transaction at i

LAST

i

(X) LAST

i

when X prepares or last locks

CONFLICT

i

(X) time later than conicting

transactions at i for X

LATEST

i

(X) latest time acceptable to i for X

START (X) start time for X

TIME(X) transaction time for X

Predicates

COHORT

i

(X) does site i have a cohort of X

DELAYS

i

(Y;X) does Y in PREPAREd state at i

delay X at i when X prepares

PREPAREd

i

(Y;X) is Y in PREPAREd state at i

when X prepares

BEFORE

i

(Y;X;�) must Y , with TIME(Y ) > T ��,

at i serialize before X


