2,590 views

Analyse the circuit in Fig below and complete the following table
$${\begin{array}{|c|c|c|}\hline \textbf{a}& \textbf{b}& \bf{ Q_n} \\\hline 0&0\\\ 0&1 \\ 1&0 \\ 1&1 \\ \hline \end{array}}$$

@Arjun Sir here question is incomplete
why?
where is c) question?
yes.. Actually that was moved to a new question- answer is yet to be moved. Each linked question was made separate so as to be included in exam when created.

The output of the circuit given as $: Q=aQ_{n-1}+ab+bQ_{n-1}$

Hence, $Q_{n}=Q_{n-1}(a+b)+ab$

$00 \implies Q_{n-1}(0+0) + 0.0 = Q_{n-1}(0) + 0 = 0+0 = 0$

$01 \implies Q_{n-1}(0+1) + 0.1= Q_{n-1} (1)+ 0 = Q_{n-1}+0 = Q_{n-1}$

$10 \implies Q_{n-1}(1+0) + 1.0 = Q_{n-1} (1) + 0 = Q_{n-1}+0= Q_{n-1}$

$11 \implies Q_{n-1}(1+1)+ 1.1 =Q_{n-1}(1) + 1 =Q_{n-1}+1 = 1$

$${\begin{array}{cc|c} \textbf{a}& \textbf{b}& \bf{ Q_n} \\\hline 0&0&0\\ 0&1& Q_{n-1} \\ 1&0& Q_{n-1} \\ 1&1 &1\\ \end{array}}$$

How the propagation delay is calculated..??

Here delay should be due to one OR gate and one AND gate.

@vaishali Part c is different. See this

https://gateoverflow.in/26442/gate1991_5-c

11 =>  Qn-1(1+1) + 1.1 = Qn-1 (1) + 1 = Qn-1+1 = 1 hwo it is equals to 1

1+x=1 here x=Q n-1 .

1
2
5,531 views
3
716 views