@Arjun Sir here question is incomplete

The Gateway to Computer Science Excellence

+19 votes

Analyse the circuit in Fig below and complete the following table

$${\begin{array}{|c|c|c|}\hline

\textbf{a}& \textbf{b}& \bf{ Q_n} \\\hline

0&0\\\ 0&1 \\ 1&0 \\ 1&1 \\ \hline

\end{array}}$$

+16 votes

Best answer

The output of the circuit given as :

$Q=aQ_{n-1}+ab+bQ_{n-1}$

Hence,

$Q_{n}=Q_{n-1}(a+b)+ab$

$00 \implies Q_{n-1}(0+0) + 0.0 = Q_{n-1}(0) + 0 = 0+0 = 0$

$01 \implies Q_{n-1}(0+1) + 0.1= Q_{n-1} (1)+ 0 = Q_{n-1}+0 = Q_{n-1}$

$10 \implies Q_{n-1}(1+0) + 1.0 = Q_{n-1} (1) + 0 = Q_{n-1}+0= Q_{n-1}$

$11 \implies Q_{n-1}(1+1)+ 1.1 =Q_{n-1}(1) + 1 =Q_{n-1}+1 = 1$

$${\begin{array}{cc|c}

\textbf{a}& \textbf{b}& \bf{ Q_n} \\\hline

0&0&0\\ 0&1& Q_{n-1} \\ 1&0& Q_{n-1} \\ 1&1 &1\\

\end{array}}$$

$Q=aQ_{n-1}+ab+bQ_{n-1}$

Hence,

$Q_{n}=Q_{n-1}(a+b)+ab$

$00 \implies Q_{n-1}(0+0) + 0.0 = Q_{n-1}(0) + 0 = 0+0 = 0$

$01 \implies Q_{n-1}(0+1) + 0.1= Q_{n-1} (1)+ 0 = Q_{n-1}+0 = Q_{n-1}$

$10 \implies Q_{n-1}(1+0) + 1.0 = Q_{n-1} (1) + 0 = Q_{n-1}+0= Q_{n-1}$

$11 \implies Q_{n-1}(1+1)+ 1.1 =Q_{n-1}(1) + 1 =Q_{n-1}+1 = 1$

$${\begin{array}{cc|c}

\textbf{a}& \textbf{b}& \bf{ Q_n} \\\hline

0&0&0\\ 0&1& Q_{n-1} \\ 1&0& Q_{n-1} \\ 1&1 &1\\

\end{array}}$$

- All categories
- General Aptitude 1.9k
- Engineering Mathematics 7.5k
- Digital Logic 2.9k
- Programming and DS 4.9k
- Algorithms 4.4k
- Theory of Computation 6.2k
- Compiler Design 2.1k
- Databases 4.1k
- CO and Architecture 3.4k
- Computer Networks 4.2k
- Non GATE 1.4k
- Others 1.4k
- Admissions 595
- Exam Queries 573
- Tier 1 Placement Questions 23
- Job Queries 72
- Projects 18

50,737 questions

57,385 answers

198,560 comments

105,386 users