# Multi Valued Dependencies

536 views

Multi Valued Dependencies(MVD)  satisfied by relation R(A,B,C) with tuples: (a1,b1,c1),(a1,b1.c2), (a2,b1,c1), (a2,b1,c3)

A⇢⇢B

B⇢⇢A,   BC⇢⇢A, B⇢⇢AC

0

this condition should hold for MVD

A relation R is in 4NF if for all MVD in D+ of the form A->>B at least one of the following hold

A ->> B is a trivial MVD
A is a superkey

but  I am getting confused with  tuples .can someone help me with it

1 vote

B⇢⇢A, is wrong (a1,b1,c1) and (a2,b1,c1) prove this  //For same B value different A value

BC⇢⇢A is wrong (a1,b1,c1)and(a2,b1,c1) prove this ////For same B,C values different A value

B⇢⇢AC is wrong (a1,b1,c1)and(a2,b1,c1) prove this //For same B value different A, C values

0
You are showing for FD not MVD.

## Related questions

1
161 views
A.dep-->>job B.dep-->>part C.both a and b D.none of these
1 vote
2
131 views
How to find all mvd's in this table.i know mvd defination according to that we let t1,t2,t3,t4 in table but in this table ,which tuple we take t1,t2,t3,t4 .and how defination of.mvd constraints satisfy
3
435 views
Consider the following implications relating to functional and multivalued dependencies given below, which may or may not be correct. if $A \rightarrow \rightarrow B$ and $A \rightarrow \rightarrow C$ then $A \rightarrow \rightarrow BC$ if $A \rightarrow B$ and $A \rightarrow C$ then ... $A \rightarrow \rightarrow C$ Exactly how many of the above implications are valid? $0$ $1$ $2$ $3$